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Abstract 

This project develops a framework to support research in evolutionary 

computing. The framework prioritises usability and extensibility, so that it 

is approachable to new users and can implement a diverse range of evolu-

tionary search and optimization methods; this includes evolutionary algo-

rithms and genetic programming. 

Written from scratch in Python, the framework successfully implements 

two major paradigms of evolutionary computing [1]: genetic algorithms 

and genetic programming. Using these methods, the framework is able to 

solve OneMax and symbolic regression problems. 

EvoKit is designed for novice and expert users alike. It is completely doc-

umented and provides tutorials for each major use case. This report adopts 

standardised terminologies from Introduction to Evolutionary Computing 

by Eiben and Smith [2]. The following materials supplement this report: 

the online repository, the online introduction, and the API documentation. 

 

 

  

https://github.com/lyodine/EVOKIT
https://yidinglab.github.io/
https://yidinglab.github.io/modules.html
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1 Notations 

These notations are used to describe components of algorithms.  

TABLE 1: MATHEMATICAL NOTATIONS 

Expression Description 

ℐ Set of all individuals 

𝒫 Set of all populations 

𝑎 ∈ 𝐴 𝑎 is in set 𝐴 

𝑃 ∈ 𝒫  𝑃  is a population, same as 𝑃 ⊆ ℐ 

𝑃 ∈ 𝒫𝐸  𝑃  is a population of evaluated individuals 

𝑃 ∈ 𝒫𝑈  𝑃  is a population of unevaluated individuals 

𝑥, 𝑥 ∈ 𝑃  𝑥 is an individual in population 𝑃  

𝑒 ∈ 𝐸 𝑒 is an evaluator 

𝑠 ∈ 𝑆 𝑠 is a selector 

𝑣 ∈ 𝑉  𝑣 is a variator 

𝑎 ∘  𝑏 Composition of functions 𝑎 and 𝑏; 𝑎 ∘ 𝑏(𝑥) = 𝑏(𝑎(𝑥)) 
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The notations describing algorithms should be self-explanatory.  

TABLE 2: ALGORITHM NOTATIONS 

Expression Description 

𝜄 ← 𝑏 Assign 𝑏 to identifier (variable) 𝜄 

obj.m  Member m of object obj 

global 𝜄1 ∶ int 
Declare identifier 𝜄1 to represent a global var-

iable 

access global 𝜄1 Make global variable 𝜄1 available in this scope 

destroy 𝜄1 
Destroy the association between 𝜄1  and its 

value 

this is a comment A comment 

update a file 

user_input 

effect 

An operation or value that is not explicitly 

defined 

uniform_sample(…) A function that is not explicitly defined 

 

 

  



 

11 

 

2 Introduction 

Frameworks facilitate machine learning research. Examples  such as  Torch 

and TensorFlow streamline development, encourages interoperability of 

components, and facilitates the analysis of algorithms. Frameworks also 

support education, improving accessibility and helping non-experts to ap-

ply ML algorithms. 

Paradigms of evolutionary computing originated as distinct fields of re-

search. Since the term "evolutionary computing" was coined in the 1990s 

[1, p. 5], efforts have been made to unify these paradigms. Some examples 

are: (a) a textbook that teaches them as a single subject [2], (b) a theoret-

ical model that describes them with the same language [3], and (c) frame-

works that implement several algorithms using the same system [4] [5] [6]. 

EvoKit follows this trend, prioritising usability, understandability, and flex-

ibility. These priorities are codified in section 4.2 Non-Functional Require-

ments as requirements. Sections 5.1 Design Decisions and 5.2 Module De-

sign enumerate, respectively, modules and decisions that derive from these 

requirements. 



 

12 

 

The rest of this report is organised as follows: 

 Section 2 outlines the problem models of evolutionary computing. 

 Section 3 details goals and requirements of the framework. 

 Section 4 lists design decisions and modules. 

 Section 5 gives examples of applying the framework to solve several 

well-known problems. 

 Section 6 collects other works that are referenced in this report. 

 Section 7 forecasts possible ways to improve the framework. 
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3 Problem Model 

Development of any problem-solving software must use a fixed understand-

ing of the problem model. This section captures a description of evolu-

tionary computing. 

Evolutionary Computing  (EC, also evolutionary computation) is 

a metaheuristic, iterative, stochastic, population-based search and optimi-

sation method that emulates Darwinian natural selection. The main para-

digms of evolutionary computing are: (a) genetic algorithms, (b) evolution-

ary strategies, (c) evolutionary programming, and (d) genetic programming 

[1]. 

Evolutionary computing has seen widespread use [7]. Some examples are: 

design of antennae [8], design of neural networks [9], evolving machine 

learning algorithms [10], and the discovery of physical laws [11]. Since 2004, 

the Humies award has been given to human-competitive results produced 

by evolutionary computing, totalling 50 gold/silver awards up to the 21st 

competition [12]. An article by Koza discusses trends of human-competitive 

results by genetic programming [13]. 

evolutionary 

computing  
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3.1 Components of an Algorithm 

Evolutionary Algorithms  (EAs) typically follow a fixed structure. A 

minimal iteration (or generation) of an evolutionary algorithm (EA) con-

sists of the following steps [2, pp. 28-34], as shown in Figure 1. 

− The algorithm begins with a population: a collection of individu-

als. Each individual is a candidate solution to the problem. 

− The variator produces new individuals from existing ones. 

− The evaluator assigns a fitness to each individual, correlating to 

the individual's ability to solve the given problem. The fitness can be 

a real number or, in a muti-objective setting, a real vector. 

− The selector picks a subset of these individuals to replace ones in 

the population. Generational algorithms replace the entire popula-

tion; steady-state algorithms replace a subset of the population. 

evolutionary 

algorithms  

population; 

individual 

variator  

evaluator 

fitness  

selector  
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Figure 1: Steps of an evolutionary algorithm 

As illustrated in Figure 2, this algorithm captures a search and optimi-

sation process. In it, individuals (in the population) are a subset of the 

solution space; the evaluator captures how well the solution performs in 

the problem space, and the variator explores the solution space. The selec-

tor uses information given by the evaluator to steer exploration of the 

solution space (by selecting from the output of the variator). The evalua-

tor, variator, and selector are operators that act on the population. 

search and 

optimisation  

operator 
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Figure 2: A minimal evolutionary algorithm 

3.1.1 A Mathematical Formulation 

An informal mathematical description of the model follows. Section 1 No-

tations collects all mathematical notations used in this document. 
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Each population is a set of individuals. An evaluated individual is an 

individual whose fitness attribute is set. For simplicity, either all individ-

uals in a population is evaluated, or none of them are. 

TABLE 3: NOTATIONS OF COLLECTIONS 

Collection Notation 

Population 𝑃 ∈ 𝒫,  𝒫  = {𝑃 ′ ∣ 𝑃 ′ ⊆ ℐ} 

Evaluated 

population 
𝑃 ∈ 𝒫𝐸, 𝒫𝐸 = {𝑃

′ ∈ 𝒫 ∣ 𝑖.fitness defined ∀𝑖 ∈ 𝑃 ′ }   

Unevaluated 

population 
𝑃 ∈ 𝒫𝑈 , 𝒫𝑈 = 𝒫 ∖ 𝒫𝐸

Operators act on populations. An evaluator maps a population to an eval-

uated population. A selector selects from an evaluated population to a 

subset of it. A variator maps from a population to an unevaluated popu-

lation. 

evaluated 

induvial 
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TABLE 4: NOTATIONS OF OPERATORS 

Operator Notation 

Evaluator 𝑒 ∈ 𝐸, 𝑒′ ⊆ 𝒫 → 𝒫𝐸   ∀ 𝑒′ ∈ 𝐸 

Selector 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝒫𝐸 → 𝒫𝐸
′   ∀ 𝑠′ ∈ 𝑆,𝒫𝐸

′ ⊆ 𝒫𝐸 

Variator 𝑣 ∈ 𝑉 ,  𝑣′ ∈ 𝒫 → 𝒫𝑈     ∀ 𝑣′ ∈ 𝑉  

3.1.2 A Variant Model 

Evolutionary algorithms often select twice, once before and once after ap-

plying the variator [2, pp. 28-34]. 

The first selection (with the parent evaluator and the parent selector) 

[2, p. 31] select for high-fitness individuals to undergo variation, so that 

their advantageous traits are passed on. The second selection (with the 

offspring evaluator  and the survivor selector) maintains the popula-

tion size, to keep the cost of storing and evaluating individuals low [2, pp. 

33-34]. Figure 3 visualises this structure: 
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Figure 3: Structure a typical evolutionary algorithm 
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4 Requirements Specifications 

As an evolutionary learning framework, EvoKit must facilitate the research 

and development of algorithms. This primary goal  divides into three 

subgoals: (a) the framework must be able to implement algorithms, (b) 

these algorithms must use interoperating operators, and (c) the framework 

must be able to analyse these operators. 

Each subgoal decomposes to requirements; each requirement inspires de-

sign and provide verifiable ways to achieve related goals. Conversely, all 

design decisions and development efforts must contribute to the satisfac-

tion of requirements; all requirements must contribute to the satisfaction 

of goals. This approach (Figure 4) increases productivity by reducing 

wasted effort [14]. 

primary goal 

subgoal 

requirement 



 

21 

 

 

Figure 4: Relation between goals, requirements, and design decisions 

4.1 Functional Requirements 

Functional requirements follow from goals, further detailing tasks that 

the software must complete. EvoKit's subgoals and functional requirements 

are as follows: 

• GOAL 1: Provide a framework for implementing novel evolutionary 

algorithms. 

«Implement Algorithms» FREQ 1 ← (GOAL 1): The framework 

must be able to implement all evolutionary algorithms in Appen-

dix 1. 

• GOAL 2: Provide a framework that supports interoperation of evolu-

tionary operators. 

«Interoperable Operators» FREQ 2 ← (GOAL 2): Ensure that 

operators of the same type should share one common behaviour 

so that they can be used interchangeably. 

• GOAL 3: Facilitate the analysis and communication of evolutionary 

algorithms. 

«Visualise Algorithms» FREQ 3 ← (GOAL 3): Provide a way to 

visualise the learning process. 

functional 

requirement 
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«Visualise Individuals» FREQ 4 ← (GOAL 3): Provide a way to 

visualise individuals. 

4.2 Non-Functional Requirements 

While functional requirements define tasks that the software must com-

plete, non-functional requirements describe qualities that the software 

must exhibit. That is, non-functional requirements prescribe qualities, in-

stead of behaviours [15, pp. 45-71]. 

4.2.1 Usability 

The ease of a use of a software must be defined with respect to user groups 

[16, p. 22]. EvoKit in particular should be usable to both novice and expert 

users. 

«Right Level of Abstraction» NFREQ 1: A powerful tool against complex-

ity, abstraction separates the important from the inconsequential [16, p. 

49]. The framework abstracts away common and repetitive tasks, so that 

its user can focus on developing novel algorithms. 

«Self-Sufficient Instructions» NFREQ 2: The framework sufficiently and 

completely describes how it should be used. That is, a user can use all 

features of the software without consulting an external source. 

«Ease to Learn» NFREQ 3: Without prior experience, a user can easily 

learn to use most features of the framework. 

non-functional 

requirement 

abstraction 

 



 

23 

 

4.2.2 Understandability 

For research software, understandability allows the researcher to (a) ex-

plain how the code leads to research findings and (b) reason that the code 

behaves exactly as described [17]. Understanding a software is also critical 

to its maintenance [16, p. 28]. 

«Transparency» NFREQ 4: The framework makes its inner workings visi-

ble to the user. 

«Independence» NFREQ 5: The framework does not use any external mod- 

ule. Because external modules are maintained with the framework, they 

can have unexpected behaviours as either errors or undocumented features; 

the framework should avoid using external modules for this reason. 

«Reproducibility» NFREQ 6: All sources of randomness can be controlled. 

When randomness is controlled, the same sequence of actions always lead 

to the same output. 

4.2.3 Flexibility 

“Many in the scientific computing software community believe that upfront 

requirements are impossible, or at least infeasible.” [18, p. 1] Machine learn-

ing frameworks are especially vulnerable to this, because users in the future 

could use the framework to implement algorithms not known by today's 

researchers. The framework must anticipate this need. 
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«Modifiability» NFREQ 7: Users and maintainers of the framework can 

modify it to account for new requirements, in particular to add new capa-

bilities. 

«Portability» NFREQ 8: The framework operates normally in many dif-

ferent operating environments. This requirement is complementary to «In-

dependence» NFREQ 5, which implies portability with respect to different 

software environments. 
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5 Design 

This section lists design decisions and modules, each associated to require-

ments that motivate it. 

Traceability diagrams  (Figure 5, Figure 6) trace from requirements to 

goals, and from design decisions and modules to requirements [19]. The 

diagrams serve two purposes: 

1. By linking each decision to a requirement and each requirement to a 

goal, the diagram gives confidence that all development efforts are 

necessary. 

2. The diagram shows how each requirement affects the program. When 

a requirement changes, only components that are affected by it need 

to change. 

traceability 

diagram 
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Figure 5: Traceability diagram: goals to requirements to design decisions 
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Figure 6: Traceability diagrams: goals to requirements to modules 

5.1 Design Decisions 

This section enumerates design decisions of EvoKit. Each decision traces 

back to a functional or nonfunctional requirement. 
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5.1.1 Modularise 

«Modularise» DECISION 1: Modularisation decomposes the software into 

disjoint modules, so that each module is assigned a unique set of tasks, 

or responsibility [20, p. 1054]. A module can use other modules. 

A modular design has many benefits: 

• The assignment of responsibility to modules naturally groups relevant 

behaviours together. This helps with documentation and understand-

ing of the project («Ease to Learn» NFREQ 3). 

• Use relations between modules makes dependency relations explicit. 

In doing so, usage of external modules also becomes easy to check 

(«Independence» NFREQ 5). 

• The independent nature of modules means work done in one module 

should not affect another module. In addition, a module can be 

swapped out as long as the replacement has the same capabilities. 

This design enables modifications on a local scale («Modifiability» 

NFREQ 7). 

module 
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5.1.2 Adopt OOP 

«Adopt OOP» DECISION 2: The object-oriented programming (OOP) 

paradigm uses objects, entities that have states (fields) and behaviours 

(methods) known collectively as members [21, p. 9]. The nature of evo-

lutionary algorithms lends to them being implemented as objects: 

• An algorithm uses operators; an operator has parameters; the algo-

rithm may inspect and change these parameters during runtime. This 

structure can be modelled with objects and members («Implement 

Algorithms» FREQ 1). 

• Operators of the same type share common behaviours; for example, 

all evaluators map from an individual to a real vector. Representing 

operators as objects allows the user to change the behaviour of an op-

erator by extension, without directly modifying the operator («Modi-

fiability» NFREQ 7). 

5.1.3 Effects are Local 

«Effects are Local» DECISION 3: Unbound functions do not produce side 

effects; methods only affect states of the owner object or its arguments; 

the documentation explicitly mentions all effects. 

object 

member 
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An effect, or side effect, is the consequence of invoking a function other 

than the returned value [22, p. 10]. Examples of side effects include chang-

ing a global variable, emitting to a file, or printing to the user interface. 

Effects have the potential to change any part of the program. Similarly, 

the use of global states let a function take input from any part of the 

program. These two make it difficult to reason about the program. Limit-

ing and clarifying effects improves transparency («Transparency» NFREQ 

4). 

5.1.4 Use Python 

«Use Python» DECISION 4: Python is a popular programming language 

in the machine learning research community. This software is coded  in 

Python for the following benefits: 

• Python interpreters such as CPython are available in many operating 

systems and platforms, from microcontrollers [23] to major operating 

systems including Linux/UNIX systems, macOS, and Windows [24] 

(«Portability» NFREQ 8). 

• Python supports modules («Modularise» DECISION 1). 

• Python supports objects («Adopt OOP» DECISION 2). 

• Knowledge of Python is common in machine learning researchers. 

Documentation tools for Python (e.g. Sphinx) are widely used and 

actively supported by the community («Ease to Learn» NFREQ 3). 

effect 
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There are downsides to using Python. Empirical study showed that Python 

is significant slower to C, C++, and Java, though it is also faster to develop 

[25]. The ease to develop and use Python programs aligns with EvoKit's 

priorities. 

5.1.5 Make Hyperparameters States 

«Parameters are States» DECISION 5: Assign hyperparameters to an op-

erator as attributes, not when methods of the operator are called. That is, 

associate states with its owner, not its user. This is only possible in a design 

that uses objects («Adopt OOP» DECISION 2). 

This approach localises effects on parameters to just the parent object 

(«Effects are Local» DECISION 3). Grouping parameters with most rele-

vant objects also promotes understandability («Ease to Learn» NFREQ 

3). 

To elaborate, consider an elitist selector 𝑠  with parameter 

best_individual. This parameter stores the best individual encountered so 

far, so that a duplicate of it is always deposited into the result of selection. 

This parameter could be stored in 𝑠 as an attribute (see Algorithm 1), or 

it could be managed by the algorithm as a local variable (see Algorithm 

2): 

elitist selector  



 

32 

 

Algorithm 1: Storing hyperparameter as attribute 

𝑠 ∈ 𝑆 ← initialise_selector () 

𝑠.best_individual ∈ ℐ ← old_population.best_individual 

new_population ∈ ℐ            ← 𝑠.select(old_population) 

Algorithm 2: Storing hyperparameter as local variable 

𝑠 ∈ 𝑆 ← initialise_selector() 

best_individuall ∈ ℐ ← old_population.best_individual 

new_population ∈ ℐ             ← 𝑆.select (old_population, best_individual) 

In Algorithm 1, the operator stores its parameters; in Algorithm 2, the 

algorithm maintains parameters of all operators. 
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5.1.6 Program to Interface 

«Program to Interface» DECISION 6: Design interfaces before implemen-

tation; program against interfaces. Interfaces are part of modules («Mod-

ularise» DECISION 1). 

An interface only describes how to use a module [26]. As such, the inter-

face hides all secrets  – details that underly the module's behaviour. This 

separation of concern allows secrets to change freely, as long as these 

changes do not affect how the module can be used («Modifiability» 

NFREQ 7) [27]. 

At the same time, modules that achieve the same purpose in different ways 

can share the same interface. This is useful for designing interoperating 

operators («Interoperable Operators» FREQ 2). 

Because parameters are stored as states («Parameters are States» DECI-

SION 5), methods do not have to accept parameters in arguments. This 

allows operators of the same type to share a common set of methods. 

5.1.7 Initialise with Constructors 

«Initialise with Constructors» DECISION 7: Algorithms and operators re-

ceive parameters in constructors. 

At minimum, an evolutionary algorithm must accept operators that dictate 

its behaviour and each operator can accept more parameters. This can be 

done in two ways: via setters or via constructors. 

interface 

secret 
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For example, DEAP takes the setter approach. An algorithm in this frame-

work (Example 1) begins with the initialisation of an empty , fol-

lowed by a sequence of calls to . The tutorials instruct 

which attributes need to be set1. 

 

1
 http://deap.readthedocs.io/en/master/overview.html 
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Example 1: Workflow of creating an algorithm in DEAP 

⋮

⋮

⋮

The constructor approach lists all necessary parameters in constructors. In 

pymoo for example (Example 2), the constructor of  (representing 

algorithm NSGA2) receives parameters such as pop_size, n_offsprings, and 

mutation2. Doing so reduces the need to consult the documentation («Ease 

to Learn» NFREQ 3). 

 

2
 https://pymoo.org/getting_started/part_2.html 
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Example 2: Workflow of creating an algorithm in pymoo 

EvoKit takes a hybrid approach: an object in this framework accepts es-

sential parameters in the constructor and accepts non-essential parameters 

via setters. Figure 7 provides a visual illustration. 
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(a) (b) (c) 

Figure 7: Passing parameters by (a) setter, (b) constructor, and (c) both. 

Also note that in pymoo, parameters such as the mutation rate and number 

of offsprings are given to the algorithm itself. EvoKit attaches these pa-

rameters to most relevant operators – mutation rate to variators and num-

ber of offsprings to selectors («Parameters are States» DECISION 5.) 

5.1.8 Modify by Extension 

«4.1.8 Modify by Extension» DECISION 8: The object-oriented design 

(«Adopt OOP» DECISION 2) makes it possible to modify a class by ex-

tension. This pattern is also used in popular frameworks such as PyTorch 

and Keras [28] [29].  
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Extending (or deriving) a class changes its implementation («Modifiabil-

ity» NFREQ 7) without changing existing elements of its interface («Pro-

gram to Interface» DECISION 6). For example, all neural networks in 

PyTorch extend class  and, in doing so, inherit the  

method. Consequently, all neural networks can be trained in the same way 

by calling this method. 

Example 3: Definition of a neural network in PyTorch 

5.1.9 Interaction over Documentation 

«Interaction over Documentation» DECISION 9: For each major feature, 

the framework provides an interactive tutorial. 

This requirement is sourced from Keras [30]. The framework should allow 

the user to learn from examples. The documentation should act as a 

fallback, for advanced users and dealing with situations that are not ex-

plained in examples («Ease to Learn» NFREQ 3). 

extension 
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The interactive tutorials are located here. 

5.1.10 Complete Documentation 

«Complete Documentation» DECISION 10: Every public interface and 

every private interface is documented. The documentation describes every 

effect, every special behaviour, and every exception that can be raised. 

Documentation is vital to using and maintaining code. The documenta-

tion is the final authority on how the code operates, which is vital to both 

learning and explaining the framework («Self-Sufficient Instructions» 

NFREQ 2, «Transparency» NFREQ 4). 

In addition, the documentation captures valuable insights into develop-

ment, which enables maintenance and updating the software for future 

needs («Modifiability» NFREQ 7). 

The documentation is located here. 

documentation  

https://yidinglab.github.io/guides/index.html
https://yidinglab.github.io/modules.html
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5.1.11 Least Astonishment 

«Least Astonishment» DECISION 11: Introduce new concepts slowly and 

only when necessary. Only use concepts from evolutionary computing or 

software engineering. 

The Keras API design guidelines mention the need to reduce cognitive load 

[31]. In short: the framework should introduce as few new concepts as pos-

sible. When new concepts are introduced, they should be taken from either 

the problem domain (evolutionary computing) or the solution domain 

(software engineering). Only then can the framework be easily learned and 

used («Ease to Learn» NFREQ 3). 

5.1.12 One Source of Randomness 

«One Source of Randomness» DECISION 12: Use the  module as 

the sole source of randomness. Having only one source of randomness im-

proves reproducibility («Reproducibility» NFREQ 6). 

Custom frameworks can implement their own random seeds, such as 

 for PyTorch and  for NumPy [32]. 

the framework instead uses the native  method. 

Note that a user-defined operator may use its own source of randomness. 

For example, a evaluator that runs simulations can source randomness 

from an external module. The framework cannot and should not prevent 

this. 
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5.2 Module Design 

Following «Modularise» DECISION 1, the framework divides into mod-

ules. This section discusses the design of module interfaces and how mod-

ules combine to form a workflow. 

5.2.1 Global and Local Strategies 

In an evolutionary algorithm, all operators of the same type share the same 

responsibility (see Table 3). This feature presents an opportunity to design 

one interface for each operator type («Program to Interface» DECISION 

6). 

The behaviour of an operator is defined on two levels – as a global strategy 

and a local strategy. Take three implementations of selectors for example, 

where let 𝑛 is the target number of offspring: 

 Truncation selection [33, p. 372] (or simply top-𝑛 selection [34, p. 

89]) takes 𝑛 highest-fitness individuals from the population. 
truncation 

selection 
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 Tournament selection  [33, p. 368] [34, p. 86] takes the best indi-

vidual from a uniform random subset of the population; repeating 𝑛 

times. 

 Fitness proportionate selection [34, p. 81] selects an individual 

with probability proportional to its fitness; repeating 𝑛 times. 

These selectors are defined in the same general format: from a subset of 

the population (determined by the global strategy), select a subset (using  

the local strategy). Table 5 defines the above selectors in this format: 

TABLE 5: OPERATORS, BY GLOBAL AND LOCAL LEVEL STRATEGIES 

Selector Global Strategy Local Strategy 

Truncation From all Select best 𝑛 

Tournament From subset Select best 𝑛 

Fitness proportionate From all 

Select each with proba-

bility proportional to fit-

ness. 

Therefore, EvoKit implements each operator in two parts (Algorithm 3): 

the global behaviour and the local behaviour, where the global behaviour 

acts a context for the local behaviour. When expending an operator, the 

user can choose to override neither, either, or both behaviours. 

tournament 

selection 

fitness 

proportionate 

selection 
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Algorithm 3: Behaviour of the Selector module 

class Selector 

function select_from_population (𝑃 ∈ 𝒫)→ 𝒫 

𝑃 ∗ ∈ 𝒫 ← initialise_empty_population () 

repeat until is_empty (𝑝) or a termination condition is met 

𝑃 ′  ∈ 𝒫 ← global_selection_strategy (𝑃 ) 

𝑃 ′∗ ∈ 𝒫 ← select_from_subset(𝑃 ′) 

update 𝑃   ← 𝑃 ∖ 𝑃 ′∗ 

𝑃 ∗ ← 𝑃 ∗ ∪ 𝑃 ′∗ 

end repeat 

return 𝑃 ∗ 

end function 

function select_from_subset(𝑃 ′ ∈ 𝒫)→  𝒫 

𝑃 ′∗ ∈ 𝒫 ← local_selection_straetgy  (𝑃 ′) 

return 𝑃 ′∗ 

end function 

end class 

This design has another benefit: to modify an operator by extension, the 

user can override just the global or local selection strategy («Modifiability» 

NFREQ 7). 
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Variators 

The design of variators is similar (Algorithm 4). Here, for each local strat-

egy that receives 𝑛 parents, the default global strategy splits the popula-

tion into 𝑛-tuples then supplies each tuple to the local strategy. The global 

strategy then collects the results then returns them. 
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Algorithm 4: Behaviour of the Variator module 

class Variator 

function initialise (arity ∈ ℤ0+) 

 ⋮ 

function vary_population (𝑃 ∈ 𝒫)→ 𝒫 

𝑃 ∗ ∈ 𝒫 ← initialise_empty_population () 

until 𝑝 is exaused 

𝑃 ′ ∈ 𝒫 ← next 𝑛 items in 𝒫 

𝑃 ∗ ∈ 𝒫 ← 𝑃 ∗ ∪ vary(𝑃 ′) 

end until 

return 𝑃 ∗ 

end function 

function vary(𝑃 ′ ∈ 𝒫)→ 𝒫 

𝑃 ′∗ ∈ 𝒫 ← local_variation_strategy (𝑃 ′) 

return 𝑃 ′∗ 

end function 

end class 

Evaluators 

For evaluators, the default global strategy applies a local strategy to each 

item in the population. 
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Algorithm 5: Behaviour of the Evaluator module 

class Evaluator 

function evaluate_population (𝑃 ∈ 𝒫)→ effect 

for each 𝑟 in 𝑃  

update 𝑟.fitness: ℝ ← evaluate(𝑟) 

end for 

end function 

function evaluate(𝑟 ∈ ℐ)→ ℝ 

return local_evaluation_strategy (r) 

end function 

end class 

5.2.2 Chaining Operators 

The evaluator, selector, and variator map from and to just three sets: 𝒫, 

𝒫𝐸, and 𝒫𝑈  (see Table 3). The following operators or compositions of op-

erators map from 𝒫 to subsets of 𝒫. They can therefore be chained. 
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TABLE 6: TYPES OF OPERATORS OR COMPOSITIONS OF OPERATORS 

Operator or Composition Type 

evaluator ∘ selector 𝒫 → 𝒫 

variator 𝒫 → 𝒫𝑈 , 𝒫𝑈 ⊂ 𝒫 

Consequently, the framework treats an iteration as a composition of two 

operations: (a) evaluation followed by selection and (b) variation. This 

formulation has two benefits: 

Ease to Write Algorithms 

Because both operations map from the same set to its subset, one can write 

an algorithm by constantly reassigning to the same variable, updating the 

population at each step. 
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Algorithm 6: One iteration of a simple evolutionary algorithm 

function step(𝑃 ∈ 𝒫,   𝑣 ∈ 𝑉 ,   𝑒 ∈ 𝐸,   𝑠 ∈ 𝑆)→ effect 

update 𝑃 ∈ 𝒫𝑈  ← 𝑣(𝑃)  apply the variator 

update 𝑃 ∈ 𝒫𝐸 ← 𝑒(𝐸)  apply the evaluator 

update 𝑃 ∈ 𝒫𝐸 ← 𝑠(𝑃)  apply the selector 

end function 

Ease to Visualise Algorithms 

An algorithm written in this form can be visualised as an acyclic graph, 

where nodes are operators and edges represent the passing of individuals 

between operators. For example, Figure 8 visualises Algorithm 6 as a se-

quence of assignments to the same variable: 
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Figure 8: Algorithm 6 as a sequence of assignments 

This formulation also significantly increases the range of algorithm that 

EvoKit can implement. For example, Figure 9 visualises a steady-state al-

gorithm, where each iteration replaces only a subset of the population [35, 

p. 510]. 
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Figure 9: Visualisation of a steady-state algorithm as an acyclic graph 
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5.3 Modules 

The framework implements one module for each component of an evolu-

tionary algorithm, in addition to the algorithm itself. These modules are 

abstract base classes that specify the behaviours of concrete modules of 

that type. 

5.3.1 Individual 

«Individual» MODULE 1: Generic base class of all individuals. The indi-

vidual includes the representation, as well as parameters that relate to the 

training process (e.g. fitness). 

Offspring produced by the variator must be independent from parents, so 

that changes made on either the offspring of its parent does not affect the 

other. To enable this, Individual must implement a method that creates 

an independent copy of itself. 

abstract base 

class  
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TABLE 7: MEMBERS OF AN INDIVIDUAL 

Module Member Type 

Individual 

genome Depends on the representation 

fitness Tuple[float] (Tuple of float) 

copy Self (Same class) 

5.3.2 Population 

«Population» MODULE 2: The population represents a sequence of indi-

viduals. 

The population is generic over type parameter D, covariant to Individual. 

TABLE 8: MEMBERS OF A POPULATION 

Module Type 

Population[D] Sequence[D] (Generic sequence) 

5.3.3 Variator 

«Variator» MODULE 3: This module specifies the common interface of 

variators. All variator implementations must use this interface. 

The variator is generic over type parameter D, covariant to Individual. 
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TABLE 9: MEMBERS OF A VARIATOR 

Module Member Type 

Variator[D] 
vary self × Population[D] → Population[D] 

vary_population self × Population[D] → Population[D] 

5.3.4 Evaluator 

«Evaluator» MODULE 4: This module specifies the common interface of 

evaluators. All evaluator implementations must use this interface. 

The evaluator is generic over type parameter D, covariant to Individual. 

TABLE 10: MEMBERS OF AN EVALUATOR 

Module Member Type 

Evalua-

tor[D] 

eval self × D → float 

eval_population self × D → effect 

5.3.5 Selector 

«Selector» MODULE 5: This module specifies the common interface of 

selectors. All selector implementations must use this interface. 
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Module Member Type 

Selector 

budget int 

select self × Population[D] → Sequence[D] 

select_population self × Population[D] → Population[D] 

5.3.6 Algorithm 

«Algorithm» MODULE 6: This module specifies the common interface of 

evolutionary algorithms. All concrete evolutionary algorithms must use 

this interface. 

Invoking the .step method advances the population by one generation. 

 

Module Member Type 

Algorithm step Nothing → effect 

5.3.7 Grouping Modules 

Machine learning algorithm receives an input, performs some computation, 

then emits an output [2, p. 3]. This division of responsibilities leads to a 

grouping of modules as shown in Figure 10. These modules satisfy require-

ments «Implement Algorithms» FREQ 1, «Interoperable Operators» 

FREQ 2, and «Right Level of Abstraction» NFREQ 1. 
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Figure 10: Division of modules by responsibility 

The following modules contain submodules that represent algorithm com-

ponents, from «Individual» MODULE 1 to «Algorithm» MODULE 6. 

«Core» MODULE 7: The Core module manages the learning process. Its 

submodules are agnostic to the problem: the algorithm and the selector 

can be used with any combination of representations, evaluators, and vari-

ators. 

«Evolvables» MODULE 8: The Evolvables module includes submodules 

that directly interact with the problem, namely: (a) the individual that 

captures a solution, (b) the evaluator which captures how well a solution 

solves the problem, and (c) the variator which explores the solution space 

by deriving new solutions from existing ones. 
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5.3.8 Implementation Modules 

The framework ships with two implementations. Each implementation cap-

tures a well-known problem in evolutionary computing and a representa-

tion that has been widely used to solve it. 

«BinString» MODULE 9: Capture the OneMax problem and genetic algo-

rithms, using binary string representations. 

«GP» MODULE 10: Capture the symbolic repression problem and genetic 

programming, using expression tree representations. 

5.3.9 Accountant 

Because an evolutionary algorithm is iterative, it is trivial to access the 

state of a population between iterations. However, what happens during 

an iteration is opaque to the user; the framework should provide a way to 

visualise this «Visualise Algorithms» FREQ 3. 

Because an algorithm is an acyclic graph of operators, there are two places 

where useful information can be generated: inside operators and between 

operators. Because operators are defined by the user, the framework may 

not be able to see into operators. The framework can still report what 

happens between operators, however. Figure 11 illustrates this. 
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Figure 11: Opportunity to implement a statistics module 

«Accountant» MODULE 11: The solution to this is the observer pattern 

[21, pp. 336-351]. As shown in Figure 12, the following exchanges occur 

between the Algorithm and Accountant modules: 

1. The algorithm registers an accountant. 

2. Then, the algorithm subscribes the accountant to itself. 

3. When an event fires in the algorithm, the algorithm notifies all at-

tached accountants. 

4. When the accountant receives a notification, it collects data from the 

associated algorithm. 

observer 

pattern 
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Figure 12: Information exchanged between Algorithm and Accountant 

5.3.10 Visualisers 

Some complex representations, such as tree-based genetic programs [36], 

are difficult to represent with text. The Visualiser module represents these 

individuals as figures («Visualise Individuals» FREQ 4). Its submodules 

correspond to representations. 

«Visualisers» MODULE 12: Visualiser for complex representations. 

«GP-Visualiser» MODULE 13, submodule of «Visualisers» MODULE 12: 

Visualiser for tree-based genetic programs. 

5.4 The Workflow: Bring Everything Together 

The module SimpleLinearAlgorithm extends Algorithm. SimpleLinearAl-

gorithm describes a simple three-step algorithm of variation-selection-eval-

uation., as shown in Figure 13. 
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Figure 13: A simple linear algorithm 

With the algorithm defined, the user can define custom operators. Each 

custom operator should extend the corresponding base class (Evaluator, 

Selector, and Variator). Figure 14 illustrates these operators and their in-

heritance relations. 
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Figure 14: Initialising an algorithm with components 

While all of that seems intimidating, it can be done in just 5 lines: 1 line 

to define the algorithm, 1 line to initialise the population, and 3 lines to 

initialise operators. Example 4 shows an example of this. 

Example 4: Invoking an evolutionary algorithm in 5 lines 
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6 Examples 

This section demonstrates the application of the framework to solve two 

problems: OneMax and Symbolic Regression. 

6.1 OneMax 

This section demonstrates the application of genetic programming to solve 

a symbolic regression problem. The algorithm listed in this section uses 

the following components: 
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TABLE 11: CHOICES FOR EACH COMPONENT TYPE FOR ONEMAX 

Type Choice Definition 

Algorithm Minimal Figure 2 

Representation Binary string 
6.1.1 Components 

Evaluator OneMax 

Variator Bit Mutation 6.1.1 Components 

Selector (𝜇 + 𝜆) 6.1.1 Components 

6.1.1 Components 

The "hello world" of evolutionary algorithms, the OneMax problem was 

first proposed for study with genetic algorithms [37].  

Representation and Evaluator 

The OneMax problem uses fixed-length binary string representations. It 

seeks to evolve a string whose bits sum to the largest possible number. 

Representation Fixed-length binary string e.g. [1,1,0,1]  

Evaluator Sum digits e.g. return 3 for [1,1,0,1 

 

OneMax  



 

63 

 

Variator 

Many variators have been defined for this representation. This example 

uses the bitwise mutation operator [2, p. 52]. For each bit in the rep-

resentation, this operator flips that bit with probability 𝑝 ∈ [0…1] ⊆ ℝ. 

Variator For each bit in the parent, flip it with probability 𝑝. 

Selector 

This example uses (𝜇 + 𝜆)  selection, where 𝜇  parents produce 𝜆  off-

spring. Then, parents and offspring form a pool of size (𝜇 + 𝜆), from which 

𝜇 individuals with highest fitness are selected [2, p. 89]. 

(𝜇 + 𝜆)  

Selector 

Truncation selector, select 𝜆 highest-fitness individu-

als from a combined pool of parents and offspring. 

Example for One Iteration 

This example uses 3 parents. Since the binary mutation operator produces 

one offspring for each parent, the number of offspring is also 3. The selector 

selects 3 individuals from these 6 (3 + 3) individuals. Each individual has 

two memberss: the genome (the binary string representation) and its fit-

ness. 

bitwise 

mutation 

operator  

(𝜇 + 𝜆) 

selection 
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TABLE 12: INDIVIDUALS IN THE EXAMPLE ALGORITHM 

Members 

fitness 

𝑝1 [1,0,0,0,1] sum(1,0,0,0,1) = 2 

𝑝2 [0,1,1,1,0] sum(0,1,1,1,0) = 3 

𝑝3 [0,1,0,1,0] sum(0,1,0,1,0) = 2 

Offspring Generation 

The variator applies to each of 𝑝1, 𝑝2, 𝑝3. For each digit in each 𝑝𝑖, the 

variator independently decides whether to flip that digit, with probability 

𝑝 to flip. 

Suppose that the decisions are [𝑦, 𝑦, 𝑛, 𝑛, 𝑦], [𝑛, 𝑛, 𝑦, 𝑛, 𝑦], and [𝑛, 𝑦, 𝑦, 𝑦, 𝑦] 

for 𝑝1, 𝑝2, 𝑝3 respectively. XORing a decision to the bit string applies that 

decision. 

𝑝1 = [1,0,0,0,1]

𝑝2 = [0,1,1,1,0]

𝑝3 = [0,1,0,1,0]

  
───𝑋𝑂𝑅

───𝑋𝑂𝑅

───𝑋𝑂𝑅

 

[1,1,0,0,1]

[0,0,1,0,1]

[0,1,1,1,1]

⏞    
decisions as masks

  
→
→
→
  

[0,1,0,0,0] = 𝑝1
′

[0,1,0,1,1] = 𝑝2
′

[0,0,1,0,1] = 𝑝3
′

 

Selection 

Together, parents and their offspring form a pool of size 6. 
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TABLE 13: INDIVIDUALS IN THE EXAMPLE ALGORITHM, POST VARIATION 

Members 

Fitness 

𝑝1 [1,0,0,0,1] sum(1,0,0,0,1) = 2 

𝑝2 [0,1,1,1,0] sum(0,1,1,1,0) = 3 

𝑝3 [0,1,0,1,0] sum(0,1,0,1,0) = 2 

𝑝1
′ [0,1,0,0,0] sum(0,1,0,0,0) = 1

𝑝2
′ [0,1,0,1,1] sum(0,1,0,1,1) = 3

𝑝3
′ [0,0,1,0,1] sum(0,0,1,0,1) = 2

From there, the selector takes 3 individuals with highest fitness. That is: 

𝑝2 with fitness 3, 𝑝2
′  with fitness 3, and 𝑝3

′  with fitness 2. Because 𝑝1, 𝑝3, 𝑝3
′  

share the same fitness of 2, 𝑝3
′  is selected uniformly to break the tie. 

6.1.2 Analysis 

The training curve (Figure 15) is generally smooth. Convergence occurs at 

step 40. The fitness improvement rate begins quickly, then plateaus close 

to convergence. 
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Figure 15: Training curve of the custom algorithm 

6.2 Symbolic Regression 

This section demonstrates the application of genetic programming to solve 

symbolic regression. The algorithm listed in this section uses the following 

components: 
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TABLE 14: HYPERPARAMETERS FOR SYMBOLIC REGRESSION 

Type Choice Definition 

Algorithm Minimal Figure 2 

Representation Expression tree 

6.2.2 Symbolic Regression 
Evaluator 

Symbolic 

regression 

Variator Subtree crossover 6.2.1 Generic Programming 

Selector (𝜇 + 𝜆)  6.1.1 Components 

6.2.1 Generic Programming 

Generic programming  by Koza [36] uses representations that are them-

selves functions. Each representation (a expression tree, or genetic pro-

gram) is a syntax tree where intermediate nodes are functions and termi-

nal nodes are either nullary functions, constants, or variables. 

As an example, the genetic program shown in Figure 16 is functionally 

identical to pow(add(1, 𝑥1) , 𝑥2),  or (1 + 𝑥1)
𝑥2 . 

 

generic 

programming 

expression tree 
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Figure 16: Visualisation of a simple genetic program 

Initialisation 

The initialisation of genetic trees uses several parameters. First, the func-

tion set and the terminal set decide values that could form nodes of the 

constructed program [2, p. 75]: 

function set 

terminal set 



 

69 

 

TABLE 15: A PRIMITIVE SET, SORTED BY ARITY 

Set Arity Items Definition 

Terminal 0 2, 1, 0.5 Real numbers 

Function 

1 
sin The sine function 

cos The cosine function 

2 

add add(𝑥1, 𝑥2) ≔ 𝑥1 + 𝑥2 

sub sub(𝑥1, 𝑥2) ≔ 𝑥1 − 𝑥2 

mul mul(𝑥1, 𝑥2) ≔ 𝑥1 ⋅ 𝑥2 

div div(𝑥1, 𝑥2) = 𝑥1/𝑥2 if 𝑥2 ≠ 0, else 0 

The construction of genetic tree induces a bias to the initial condition. 

This example uses a modified ramped half-and-half method [2, p. 105]. The 

process begins with a random root node, then recursively populates chil-

dren of the node. Each random node contains a uniformly selected primi-

tive of any arity, except that after a certain budget or depth is reached, 

only unary primitives (terminals) can be selected. Algorithm 7 describes 

the algorithm in more detail. 
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Algorithm 7: Initialisation of a random genetic tree 
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initialise global node_budget: int 

initialise global MAX_DEPTH : int  

new_tree : Tree ← make_random_tree(0) 

function make_random_tree(current_depth: int) → Tree 

new_primitive: Primitive ← pool_primitive(current_depth) 

new_node: Node ← create_node_from(new_primitive) 

repat for arity (new_primitive) times 

new_node.add_child (make_random_tree(current_depth+1)) 

end repeat 

return new_node 

end function 

function pool_primitive(current_depth: int) → Primitive, effect 

new_primitive: Node 

acess global node_budget 

acess global MAX_DEPTH 

if node_budget < 1 or current𝑠_depth < MAX_DEPTH then 

new_primitive ← uniformly selected unary primitive 

else 

update node_budget ← node_budget − 1 

new_primitive ← uniformly selected primitive 

end if 

return new_primitive 
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end function 

 

Variator 

This example uses the subtree crossover operator. For each pair of 

parents (𝑝1, 𝑝2), this operator performs the following actions: 

1. Uniformly, select intermediate nodes 𝑛1 ∈ 𝑝1 and 𝑛2 ∈ 𝑝2 

2. Uniformly, select arbitrary child 𝑛1𝑐 of 𝑝1 and arbitrary child 𝑛2𝑐 of 

𝑝2 

3. Exchange 𝑛1𝑐 and 𝑛2𝑐. 

Figure 17 shows an example of this: 

subtree 

crossover 

operator 
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(a) (b) 

 

(c) 

Figure 17: Steps of a crossover operation: (a) select internal nodes, (b) 

select children of internal nodes, (c) result of crossover. 

6.2.2 Symbolic Regression 
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The symbolic regression problem seeks to find a function that agrees 

most with a training set, or the underlying function that generated the 

training  set [36]. 

Evaluator 

Given a training set of points 𝑆 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛  and a hypothetical generator 

𝑓∗ where 𝑦𝑖 = 𝑓
∗(𝑥𝑖), the fitness of genetic program is the difference in its 

output from that of 𝑓∗: 

𝜑( 𝑔 ∣ {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 ) = ∑ abs(𝑦𝑖 − 𝑔(𝑥𝑖))

𝑖=1,…,𝑛

 

In this example, the set 𝑆  is generated with 𝑓𝑢 = sin(𝑥) + 2 cos(𝑥)  over 

{−20,−19.75,−19.5,… ,19.5, 19.75}, or {(1 − 81)/4}𝑖=1
101. 

As an example of how the evaluator works, let 𝑔′ be a representation of 

sin(𝑥) + cos(𝑥). The fitness of 𝑔′, given evaluator 𝜑, is 

∑abs[(sin(𝑥𝑖) + cos(𝑥𝑖)) − (sin(𝑥𝑖) + 2 cos(𝑥𝑖))]
161

𝑖=1

, 𝑥𝑖 = (𝑖 − 81)/4. 

6.2.3 Analysis 

Figure 18 shows the training curve. Convergence occurs at generation 15. 

symbolic 

regression  
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Figure 18: Training curve of the symbolic regression algorithm 

Figure 19 plots highest-fitness individuals for each generation. Through 

generations, these individuals become better approximates of the test set, 

until convergence occurs. 
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Figure 19: Best individuals over generations 

Figure 20 shows the best evolved individual s(sin(𝑥) + cos(𝑥) ∗ 1) + cos(𝑥) 

which, after some simplification, becomes sin(𝑥) + 2 cos(𝑥). 
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Figure 20: Best evolved tree 

Note the occurrence of an identity function ∗ 1. This is an instance of ge-

netic programming – while the crossover operator does not seek to remove 

nodes, the algorithm is able to evolve extra nodes into identities, so that 

it can emulate a simple function with a representation that has more nodes. 
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7 Related Work 

EC-KiTy is a well-engineered object-oriented evolutionary computing 

framework. Both EC-KiTy and EvoKit are object-oriented frameworks 

that explicitly evoke software engineering principles. I chose the name 

EvoKit in homage to EC-KiTy. 

PyTorch is a state-of-the-art deep learning framework. EvoKit references 

PyTorch for its user-friendly design and usability features. 

Keras is a high-level neural network API with a rich design guideline [31]. 

Its developers have written extensively about its design in blogs [30]. Sev-

eral designs of EvoKit reference Keras. 

Pymoo and DEAP are state-of-the-art evolutionary computing frame-

works. They first inspired the development of EvoKit. 
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8 Future Work 

During development, several compromises were made due to time con-

straint. Given time, the framework  

More algorithms: The framework has only been used to implement ge-

netic algorithms and genetic programming. It could implement other par-

adigms such as evolutionary programming, evolutionary strategies, multi-

objective evolution, and more. 

Parallel computing: Parallelism significantly speeds up evolutionary al-

gorithms [38] [39]. Many frameworks [40] [41] [42] [43] implement parallel 

computing and even GPU computing. EvoKit must do the same.  

Linear Genetic Programming:  Many recent advancements [44] [45] 

in evolutionary computing are due to linear genetic programming, an al-

ternative to tree-based genetic programs [46, p. 6]. This framework 

should implement linear genetic programming in the future. 
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10 Appendices 

Appendix 1: Evolutionary Algorithms Implemented 

Algorithm Problem Reference 

Genetic Algorithm OneMax [47] 

Genetic Programming Symbolic Regression [36] 

Index 

(μ + λ) selection, 61 

abstract base class, 49 

abstraction, 21 

bitwise mutation operator, 61 

documentation, 37 

effect, 28 

elitist selector, 29 

evaluated induvial, 16 

evaluator, 13 

evolutionary algorithms, 13 

evolutionary computing, 12 

expression tree, 65 

extension, 36 

fitness, 13 

fitness proportionate selection, 40 

function set, 66 

functional requirement, 20 

generic programming, 65 

individual, 13 

interface, 31 

member, 27 

module, 26 

non-functional requirement, 21 

objects, 27 

observer pattern, 55 

offspring evaluator, 17 

OneMax, 60 

operator, 14 

parent evaluator, 17 

parent variator, 17 

population, 13 

primary goal, 19 

problem model, 12 

requirement, 19 

search and optimisation, 14 

secret, 31 
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selector, 13 

subgoal, 19 

subtree crossover operator, 70 

survivor selector, 17 

symbolic regression, 72 

terminal set, 66 

tournament selection, 40 

traceability diagram, 23 

truncation selection, 39 

variator, 13 

 

10.1 List of Tables 

Table 1: Notations of collections ............................................................. 16 

Table 2: Notations of operators .............................................................. 17 

Table 3: Operators, by global and local level strategies .......................... 40 

Table 4: Types of operators or compositions of operators ....................... 45 

Table 5: Members of an individual ......................................................... 50 

Table 6: Members of a population .......................................................... 50 

Table 7: Members of a variator ............................................................... 51 

Table 8: Members of an evaluator ........................................................... 51 

Table 9: Choices for each component type for OneMax .......................... 60 

Table 10: Individuals in the example algorithm ...................................... 62 

Table 11: Individuals in the example algorithm, post variation .............. 63 
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Table 12: Hyperparameters for symbolic regression ................................ 65 

Table 13: A primitive set, sorted by arity ............................................... 67 

Table 14: Mathematical notations............................................................ 9 

Table 15: Algorithm notations ................................................................ 10 

10.2 List of Figures 

Figure 1: Steps of an evolutionary algorithm .......................................... 14 

Figure 2: A minimal evolutionary algorithm ........................................... 15 

Figure 3: Structure a typical evolutionary algorithm .............................. 18 

Figure 4: Relation between goals, requirements, and design decisions .... 20 

Figure 5: Traceability diagram: goals to requirements to design decisions

 ............................................................................................................... 24 

Figure 6: Traceability diagrams: goals to requirements to modules ........ 25 

Figure 7: Passing parameters by (a) setter, (b) constructor, and (c) both.

 ............................................................................................................... 35 

Figure 8: Algorithm 6 as a sequence of assignments ............................... 47 

Figure 9: Visualisation of a steady-state algorithm as an acyclic graph .. 48 

Figure 10: Division of modules by responsibility ..................................... 53 
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Figure 11: Opportunity to implement a statistics module ...................... 55 

Figure 12: Information exchanged between Algorithm and Accountant .. 56 

Figure 13: A simple linear algorithm ...................................................... 57 

Figure 14: Initialising an algorithm with components ............................. 58 

Figure 15: Visualisation of a simple genetic program .............................. 66 

Figure 16: Steps of a crossover operation: (a) select internal nodes, (b) 

select children of internal nodes, (c) result of crossover. ......................... 71 

Figure 17: Training curve of the symbolic regression algorithm .............. 73 

Figure 18: Best individuals over generations ........................................... 74 

Figure 19: Best evolved tree.................................................................... 75 

10.3 List of Algorithms 

Algorithm 1: Storing hyperparameter as attribute ................................. 30 

Algorithm 2: Storing hyperparameter as local variable ........................... 30 

Algorithm 3: Behaviour of the Selector module ...................................... 41 

Algorithm 4: Behaviour of the Variator module ..................................... 43 

Algorithm 5: Behaviour of the Evaluator module ................................... 44 
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Algorithm 6: One iteration of a simple evolutionary algorithm .............. 46 

10.4 List of Functional Requirements 

«Implement Algorithms» FREQ 1 ← (GOAL 1): The framework must be 

able to implement all evolutionary algorithms in Appendix 1. ............... 20 

«Interoperable Operators» FREQ 2 ← (GOAL 2): Ensure that operators 

of the same type should share one common behaviour so that they can be 

used interchangeably. .............................................................................. 20 

«Visualise Algorithms» FREQ 3 ← (GOAL 3): Provide a way to visualise 

the learning process. ............................................................................... 20 

«Visualise Individuals» FREQ 4 ← (GOAL 3): Provide a way to visualise 

individuals. ............................................................................................. 21 

10.5 List of Nonfunctional Requirements 

«Right Level of Abstraction» NFREQ 1: A powerful tool against 

complexity, abstraction separates the important from the inconsequential 

[13]. The framework abstracts away common and repetitive tasks, so that 

its user can focus on developing novel algorithms. .................................. 21 

«Self-Sufficient Instructions» NFREQ 2: The framework sufficiently and 

completely describes how it should be used. That is, a user can use all 

features of the software without consulting an external source. .............. 21 
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«Easy to Learn» NFREQ 3: Without prior experience, a user can quickly 

learn to use most features of the framework. .......................................... 21 

«Transparency» NFREQ 4: The framework makes its inner workings 

visible to the user. .................................................................................. 22 

«Independence» NFREQ 5: The framework does not use any external mod- 

ule except for ones in Appendix 2. Because external modules are 

maintained with the framework, they can have unexpected behaviours as 

either errors or undocumented features; the framework should avoid using 

external modules for this reason. ............................................................ 22 

«Reproducibility» NFREQ 6: All sources of randomness can be controlled. 

When randomness is controlled, the same sequence of actions always lead 

to the same output. ................................................................................ 22 

«Modifiability» NFREQ 7: Users and maintainers of the framework can 

modify it to account for new requirements, in particular to add new 

capabilities. ............................................................................................. 23 

«Portability» NFREQ 8: The framework operates normally in many 

different operating environments. This requirement is complementary to 

«Independence» NFREQ 5, which implies portability with respect to 

different software environments. ............................................................. 23 
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10.6 List of Design Decisions 

«Modularise» DECISION 1: Modularisation decomposes the software into 

disjoint modules. Each module is responsible for a unique set of tasks. A 

module can use other modules. ............................................................... 26 

«Use Objects» DECISION 2: The nature of evolutionary algorithms lends 

to them being implemented as objects: ................................................... 27 

«Effects are Local» DECISION 3: Unbound functions do not produce side 

effects; methods only affect states of the owner object or its arguments; 

the documentation explicitly mentions all effects. ................................... 27 

«Use Python» DECISION 4: Python is a popular programming language 

in the machine learning research community. This software is coded  in 

Python for the following benefits: ........................................................... 28 

«Parameters are States» DECISION 5: Assign hyperparameters to an 

operator as attributes, not when methods of the operator are called. That 

is, associate states with its owner, not its user. This is only possible in a 

design that uses objects («Use Objects» DECISION 2). ........................ 29 

«Program to Interface» DECISION 6: Design interfaces before 

implementation; program against interfaces. Interfaces come with modules 

(«Modularise» DECISION 1). ................................................................ 31 

«Initialise with Constructors» DECISION 7: Algorithms and operators 

receive parameters in constructors. ......................................................... 31 
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«4.1.8 Modify by Extension» DECISION 8: The object-oriented design 

(«Use Objects» DECISION 2) makes it possible to modify a class by 

extension. This pattern is also used in popular frameworks such as PyTorch 

and Keras [22] [25]. ................................................................................. 35 

«Interaction over Documentation» DECISION 9: For each major feature, 

the framework provides an interactive tutorial. ...................................... 36 

«Complete Documentation» DECISION 10: Every interface, public or 

private, is documented. The documentation describes every effect, every 

special behaviour, and every exception that can be raised. ..................... 37 

«Least Astonishment» DECISION 11: Introduce new concepts slowly and 

only when necessary. Only introduce concepts from evolutionary 

computing or software engineering. ......................................................... 38 

«One Source of Randomness» DECISION 12: Use the  module as 

the sole source of randomness. ................................................................ 38 

10.7 List of Modules 

«Individual» MODULE 1: Generic base class of all individuals. The 

individual includes the representation, as well as parameters that relate to 

the training process (e.g. fitness). ........................................................... 49 

«Population» MODULE 2: The population represents a sequence of 

individuals. ............................................................................................. 50 
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«Variator» MODULE 3: This module specifies the common interface of 

variators. All variator implementations must use this interface. ............. 50 

«Evaluator» MODULE 4: This module specifies the common interface of 

evaluators. All evaluator implementations must use this interface. ......... 51 

«Selector» MODULE 5: This module specifies the common interface of 

selectors. All selector implementations must use this interface. .............. 51 

«Algorithm» MODULE 6: This module specifies the common interface of 

evolutionary algorithms. All concrete evolutionary algorithms must use 

this interface. .......................................................................................... 52 

«Core» MODULE 7: The Core module manages the learning process. Its 

submodules are agnostic to the problem: the algorithm and the selector 

can be used with any combination of representations, evaluators, and 

variators.................................................................................................. 53 

«Evolvables» MODULE 8: The Evolvables module includes submodules 

that directly interact with the problem, namely: (a) the individual that 

captures a solution, (b) the evaluator which captures how well a solution 

solves the problem, and (c) the variator which explores the solution space 

by deriving new solutions from existing ones. ......................................... 53 

«BinString» MODULE 9: Capture the OneMax problem and genetic 

algorithms, using binary string representations. ..................................... 54 

«GP» MODULE 10: Capture the symbolic repression problem and genetic 

programming, using expression tree representations. .............................. 54 
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«Accountant» MODULE 11: The solution to this is the observer pattern 

[17, pp. 336-351]. The operation of the module is as follows: .................. 55 

«Visualisers» MODULE 12: Visualiser for complex representations. ...... 56 

«GP-Visualiser» MODULE 13, submodule of «Visualisers» MODULE 12: 

Visualiser for tree-based genetic programs. ............................................. 56 
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