

1

EvoKit

2

EvoKit: EVOLUTIONARY COMPUTING FRAMEWORK

MADE FOR RESEARCH

BY
       YIDING             LI,         B.A.Sci                         

A THESIS

                                        SUBMITTED            TO         THE  DEPARTMENT       OF  COMPUTING   &            SOFTWARE                          

AND THE SCHOOL OF      GRADUATE STUDIES

                                  OF    MCMASTER           UNIVERSIITY                    

                       IN    PARTIAL    FU LF  I   L LMENT       OF   THE    REQUIREMENTS                      

   FOR    THE     DEGREE   OF      

   MASTER OF       ENGINEERING   

3

Master of Engineering (2024)

(Computing & Software)

McMaster University
Hamilton, Ontario, Canada

TITLE: EvoKit: Evolutionary Computing Framework Made
 for Research

AUTHOR:

 Yiding Li
 B.A.Sci (Computer Science)
 McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Stephen Kelly

NUMBER OF PAGES

 96

DATE OF PRINTING

 2024-08-19

4

Abstract

This project develops a framework to support research in evolutionary

computing. The framework prioritises usability and extensibility, so that it

is approachable to new users and can implement a diverse range of evolu-

tionary search and optimization methods; this includes evolutionary algo-

rithms and genetic programming.

Written from scratch in Python, the framework successfully implements

two major paradigms of evolutionary computing [1]: genetic algorithms

and genetic programming. Using these methods, the framework is able to

solve OneMax and symbolic regression problems.

EvoKit is designed for novice and expert users alike. It is completely doc-

umented and provides tutorials for each major use case. This report adopts

standardised terminologies from Introduction to Evolutionary Computing

by Eiben and Smith [2]. The following materials supplement this report:

the online repository, the online introduction, and the API documentation.

https://github.com/lyodine/EVOKIT
https://yidinglab.github.io/
https://yidinglab.github.io/modules.html

5

Table of Contents

1 Notations .. 9

2 Introduction... 11

3 Problem Model .. 12

3.1 Components of an Algorithm... 13

3.1.1 A Mathematical Formulation .. 15

3.1.2 A Variant Model ... 17

4 Requirements Specifications... 18

4.1 Functional Requirements ... 20

4.2 Non-Functional Requirements.. 21

4.2.1 Usability .. 21

4.2.2 Understandability.. 22

4.2.3 Flexibility .. 22

5 Design .. 23

5.1 Design Decisions .. 25

5.1.1 Modularise .. 26

5.1.2 Adopt OOP ... 27

5.1.3 Effects are Local ... 27

6

5.1.4 Use Python ... 28

5.1.5 Make Hyperparameters States .. 29

5.1.6 Program to Interface ... 31

5.1.7 Initialise with Constructors ... 31

5.1.8 Modify by Extension ... 35

5.1.9 Interaction over Documentation .. 36

5.1.10 Complete Documentation .. 37

5.1.11 Least Astonishment ... 38

5.1.12 One Source of Randomness ... 38

5.2 Module Design ... 39

5.2.1 Global and Local Strategies .. 39

5.2.2 Chaining Operators ... 44

5.3 Modules ... 49

5.3.1 Individual .. 49

5.3.2 Population ... 50

5.3.3 Variator ... 50

5.3.4 Evaluator .. 51

5.3.5 Selector ... 51

7

5.3.6 Algorithm .. 52

5.3.7 Grouping Modules ... 52

5.3.8 Implementation Modules ... 54

5.3.9 Accountant .. 54

5.3.10 Visualisers ... 56

5.4 The Workflow: Bring Everything Together 56

6 Examples ... 59

6.1 OneMax ... 59

6.1.1 Components .. 60

6.1.2 Analysis .. 63

6.2 Symbolic Regression .. 64

6.2.1 Generic Programming ... 65

6.2.2 Symbolic Regression .. 71

6.2.3 Analysis .. 72

7 Related Work... 75

8 Future Work .. 76

9 Acknowledgements ... 77

10 Appendices .. 77

8

10.1 List of Tables ... 78

10.2 List of Figures ... 79

10.3 List of Algorithms ... 81

10.4 List of Functional Requirements .. 81

10.5 List of Nonfunctional Requirements .. 82

10.6 List of Design Decisions ... 83

10.7 List of Modules .. 85

11 References .. 87

9

1 Notations

These notations are used to describe components of algorithms.

TABLE 1: MATHEMATICAL NOTATIONS

Expression Description

ℐ Set of all individuals

𝒫 Set of all populations

𝑎 ∈ 𝐴 𝑎 is in set 𝐴

𝑃 ∈ 𝒫 𝑃 is a population, same as 𝑃 ⊆ ℐ

𝑃 ∈ 𝒫𝐸 𝑃 is a population of evaluated individuals

𝑃 ∈ 𝒫𝑈 𝑃 is a population of unevaluated individuals

𝑥, 𝑥 ∈ 𝑃 𝑥 is an individual in population 𝑃

𝑒 ∈ 𝐸 𝑒 is an evaluator

𝑠 ∈ 𝑆 𝑠 is a selector

𝑣 ∈ 𝑉 𝑣 is a variator

𝑎 ∘ 𝑏 Composition of functions 𝑎 and 𝑏; 𝑎 ∘ 𝑏(𝑥) = 𝑏(𝑎(𝑥))

10

The notations describing algorithms should be self-explanatory.

TABLE 2: ALGORITHM NOTATIONS

Expression Description

𝜄 ← 𝑏 Assign 𝑏 to identifier (variable) 𝜄

obj.m Member m of object obj

global 𝜄1 ∶ int
Declare identifier 𝜄1 to represent a global var-

iable

access global 𝜄1 Make global variable 𝜄1 available in this scope

destroy 𝜄1
Destroy the association between 𝜄1 and its

value

this is a comment A comment

update a file

user_input

effect

An operation or value that is not explicitly

defined

uniform_sample(…) A function that is not explicitly defined

11

2 Introduction

Frameworks facilitate machine learning research. Examples such as Torch

and TensorFlow streamline development, encourages interoperability of

components, and facilitates the analysis of algorithms. Frameworks also

support education, improving accessibility and helping non-experts to ap-

ply ML algorithms.

Paradigms of evolutionary computing originated as distinct fields of re-

search. Since the term "evolutionary computing" was coined in the 1990s

[1, p. 5], efforts have been made to unify these paradigms. Some examples

are: (a) a textbook that teaches them as a single subject [2], (b) a theoret-

ical model that describes them with the same language [3], and (c) frame-

works that implement several algorithms using the same system [4] [5] [6].

EvoKit follows this trend, prioritising usability, understandability, and flex-

ibility. These priorities are codified in section 4.2 Non-Functional Require-

ments as requirements. Sections 5.1 Design Decisions and 5.2 Module De-

sign enumerate, respectively, modules and decisions that derive from these

requirements.

12

The rest of this report is organised as follows:

 Section 2 outlines the problem models of evolutionary computing.

 Section 3 details goals and requirements of the framework.

 Section 4 lists design decisions and modules.

 Section 5 gives examples of applying the framework to solve several

well-known problems.

 Section 6 collects other works that are referenced in this report.

 Section 7 forecasts possible ways to improve the framework.

13

3 Problem Model

Development of any problem-solving software must use a fixed understand-

ing of the problem model. This section captures a description of evolu-

tionary computing.

Evolutionary Computing (EC, also evolutionary computation) is

a metaheuristic, iterative, stochastic, population-based search and optimi-

sation method that emulates Darwinian natural selection. The main para-

digms of evolutionary computing are: (a) genetic algorithms, (b) evolution-

ary strategies, (c) evolutionary programming, and (d) genetic programming

[1].

Evolutionary computing has seen widespread use [7]. Some examples are:

design of antennae [8], design of neural networks [9], evolving machine

learning algorithms [10], and the discovery of physical laws [11]. Since 2004,

the Humies award has been given to human-competitive results produced

by evolutionary computing, totalling 50 gold/silver awards up to the 21st

competition [12]. An article by Koza discusses trends of human-competitive

results by genetic programming [13].

evolutionary

computing

14

3.1 Components of an Algorithm

Evolutionary Algorithms (EAs) typically follow a fixed structure. A

minimal iteration (or generation) of an evolutionary algorithm (EA) con-

sists of the following steps [2, pp. 28-34], as shown in Figure 1.

− The algorithm begins with a population: a collection of individu-

als. Each individual is a candidate solution to the problem.

− The variator produces new individuals from existing ones.

− The evaluator assigns a fitness to each individual, correlating to

the individual's ability to solve the given problem. The fitness can be

a real number or, in a muti-objective setting, a real vector.

− The selector picks a subset of these individuals to replace ones in

the population. Generational algorithms replace the entire popula-

tion; steady-state algorithms replace a subset of the population.

evolutionary

algorithms

population;

individual

variator

evaluator

fitness

selector

15

Figure 1: Steps of an evolutionary algorithm

As illustrated in Figure 2, this algorithm captures a search and optimi-

sation process. In it, individuals (in the population) are a subset of the

solution space; the evaluator captures how well the solution performs in

the problem space, and the variator explores the solution space. The selec-

tor uses information given by the evaluator to steer exploration of the

solution space (by selecting from the output of the variator). The evalua-

tor, variator, and selector are operators that act on the population.

search and

optimisation

operator

16

Figure 2: A minimal evolutionary algorithm

3.1.1 A Mathematical Formulation

An informal mathematical description of the model follows. Section 1 No-

tations collects all mathematical notations used in this document.

17

Each population is a set of individuals. An evaluated individual is an

individual whose fitness attribute is set. For simplicity, either all individ-

uals in a population is evaluated, or none of them are.

TABLE 3: NOTATIONS OF COLLECTIONS

Collection Notation

Population 𝑃 ∈ 𝒫, 𝒫 = {𝑃 ′ ∣ 𝑃 ′ ⊆ ℐ}

Evaluated

population
𝑃 ∈ 𝒫𝐸, 𝒫𝐸 = {𝑃

′ ∈ 𝒫 ∣ 𝑖.fitness defined ∀𝑖 ∈ 𝑃 ′ }

Unevaluated

population
𝑃 ∈ 𝒫𝑈 , 𝒫𝑈 = 𝒫 ∖ 𝒫𝐸

Operators act on populations. An evaluator maps a population to an eval-

uated population. A selector selects from an evaluated population to a

subset of it. A variator maps from a population to an unevaluated popu-

lation.

evaluated

induvial

18

TABLE 4: NOTATIONS OF OPERATORS

Operator Notation

Evaluator 𝑒 ∈ 𝐸, 𝑒′ ⊆ 𝒫 → 𝒫𝐸 ∀ 𝑒′ ∈ 𝐸

Selector 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝒫𝐸 → 𝒫𝐸
′  ∀ 𝑠′ ∈ 𝑆,𝒫𝐸

′ ⊆ 𝒫𝐸

Variator 𝑣 ∈ 𝑉 , 𝑣′ ∈ 𝒫 → 𝒫𝑈  ∀ 𝑣′ ∈ 𝑉

3.1.2 A Variant Model

Evolutionary algorithms often select twice, once before and once after ap-

plying the variator [2, pp. 28-34].

The first selection (with the parent evaluator and the parent selector)

[2, p. 31] select for high-fitness individuals to undergo variation, so that

their advantageous traits are passed on. The second selection (with the

offspring evaluator and the survivor selector) maintains the popula-

tion size, to keep the cost of storing and evaluating individuals low [2, pp.

33-34]. Figure 3 visualises this structure:

19

Figure 3: Structure a typical evolutionary algorithm

20

4 Requirements Specifications

As an evolutionary learning framework, EvoKit must facilitate the research

and development of algorithms. This primary goal divides into three

subgoals: (a) the framework must be able to implement algorithms, (b)

these algorithms must use interoperating operators, and (c) the framework

must be able to analyse these operators.

Each subgoal decomposes to requirements; each requirement inspires de-

sign and provide verifiable ways to achieve related goals. Conversely, all

design decisions and development efforts must contribute to the satisfac-

tion of requirements; all requirements must contribute to the satisfaction

of goals. This approach (Figure 4) increases productivity by reducing

wasted effort [14].

primary goal

subgoal

requirement

21

Figure 4: Relation between goals, requirements, and design decisions

4.1 Functional Requirements

Functional requirements follow from goals, further detailing tasks that

the software must complete. EvoKit's subgoals and functional requirements

are as follows:

• GOAL 1: Provide a framework for implementing novel evolutionary

algorithms.

«Implement Algorithms» FREQ 1 ← (GOAL 1): The framework

must be able to implement all evolutionary algorithms in Appen-

dix 1.

• GOAL 2: Provide a framework that supports interoperation of evolu-

tionary operators.

«Interoperable Operators» FREQ 2 ← (GOAL 2): Ensure that

operators of the same type should share one common behaviour

so that they can be used interchangeably.

• GOAL 3: Facilitate the analysis and communication of evolutionary

algorithms.

«Visualise Algorithms» FREQ 3 ← (GOAL 3): Provide a way to

visualise the learning process.

functional

requirement

22

«Visualise Individuals» FREQ 4 ← (GOAL 3): Provide a way to

visualise individuals.

4.2 Non-Functional Requirements

While functional requirements define tasks that the software must com-

plete, non-functional requirements describe qualities that the software

must exhibit. That is, non-functional requirements prescribe qualities, in-

stead of behaviours [15, pp. 45-71].

4.2.1 Usability

The ease of a use of a software must be defined with respect to user groups

[16, p. 22]. EvoKit in particular should be usable to both novice and expert

users.

«Right Level of Abstraction» NFREQ 1: A powerful tool against complex-

ity, abstraction separates the important from the inconsequential [16, p.

49]. The framework abstracts away common and repetitive tasks, so that

its user can focus on developing novel algorithms.

«Self-Sufficient Instructions» NFREQ 2: The framework sufficiently and

completely describes how it should be used. That is, a user can use all

features of the software without consulting an external source.

«Ease to Learn» NFREQ 3: Without prior experience, a user can easily

learn to use most features of the framework.

non-functional

requirement

abstraction

23

4.2.2 Understandability

For research software, understandability allows the researcher to (a) ex-

plain how the code leads to research findings and (b) reason that the code

behaves exactly as described [17]. Understanding a software is also critical

to its maintenance [16, p. 28].

«Transparency» NFREQ 4: The framework makes its inner workings visi-

ble to the user.

«Independence» NFREQ 5: The framework does not use any external mod-

ule. Because external modules are maintained with the framework, they

can have unexpected behaviours as either errors or undocumented features;

the framework should avoid using external modules for this reason.

«Reproducibility» NFREQ 6: All sources of randomness can be controlled.

When randomness is controlled, the same sequence of actions always lead

to the same output.

4.2.3 Flexibility

“Many in the scientific computing software community believe that upfront

requirements are impossible, or at least infeasible.” [18, p. 1] Machine learn-

ing frameworks are especially vulnerable to this, because users in the future

could use the framework to implement algorithms not known by today's

researchers. The framework must anticipate this need.

24

«Modifiability» NFREQ 7: Users and maintainers of the framework can

modify it to account for new requirements, in particular to add new capa-

bilities.

«Portability» NFREQ 8: The framework operates normally in many dif-

ferent operating environments. This requirement is complementary to «In-

dependence» NFREQ 5, which implies portability with respect to different

software environments.

25

5 Design

This section lists design decisions and modules, each associated to require-

ments that motivate it.

Traceability diagrams (Figure 5, Figure 6) trace from requirements to

goals, and from design decisions and modules to requirements [19]. The

diagrams serve two purposes:

1. By linking each decision to a requirement and each requirement to a

goal, the diagram gives confidence that all development efforts are

necessary.

2. The diagram shows how each requirement affects the program. When

a requirement changes, only components that are affected by it need

to change.

traceability

diagram

26

Figure 5: Traceability diagram: goals to requirements to design decisions

27

Figure 6: Traceability diagrams: goals to requirements to modules

5.1 Design Decisions

This section enumerates design decisions of EvoKit. Each decision traces

back to a functional or nonfunctional requirement.

28

5.1.1 Modularise

«Modularise» DECISION 1: Modularisation decomposes the software into

disjoint modules, so that each module is assigned a unique set of tasks,

or responsibility [20, p. 1054]. A module can use other modules.

A modular design has many benefits:

• The assignment of responsibility to modules naturally groups relevant

behaviours together. This helps with documentation and understand-

ing of the project («Ease to Learn» NFREQ 3).

• Use relations between modules makes dependency relations explicit.

In doing so, usage of external modules also becomes easy to check

(«Independence» NFREQ 5).

• The independent nature of modules means work done in one module

should not affect another module. In addition, a module can be

swapped out as long as the replacement has the same capabilities.

This design enables modifications on a local scale («Modifiability»

NFREQ 7).

module

29

5.1.2 Adopt OOP

«Adopt OOP» DECISION 2: The object-oriented programming (OOP)

paradigm uses objects, entities that have states (fields) and behaviours

(methods) known collectively as members [21, p. 9]. The nature of evo-

lutionary algorithms lends to them being implemented as objects:

• An algorithm uses operators; an operator has parameters; the algo-

rithm may inspect and change these parameters during runtime. This

structure can be modelled with objects and members («Implement

Algorithms» FREQ 1).

• Operators of the same type share common behaviours; for example,

all evaluators map from an individual to a real vector. Representing

operators as objects allows the user to change the behaviour of an op-

erator by extension, without directly modifying the operator («Modi-

fiability» NFREQ 7).

5.1.3 Effects are Local

«Effects are Local» DECISION 3: Unbound functions do not produce side

effects; methods only affect states of the owner object or its arguments;

the documentation explicitly mentions all effects.

object

member

30

An effect, or side effect, is the consequence of invoking a function other

than the returned value [22, p. 10]. Examples of side effects include chang-

ing a global variable, emitting to a file, or printing to the user interface.

Effects have the potential to change any part of the program. Similarly,

the use of global states let a function take input from any part of the

program. These two make it difficult to reason about the program. Limit-

ing and clarifying effects improves transparency («Transparency» NFREQ

4).

5.1.4 Use Python

«Use Python» DECISION 4: Python is a popular programming language

in the machine learning research community. This software is coded in

Python for the following benefits:

• Python interpreters such as CPython are available in many operating

systems and platforms, from microcontrollers [23] to major operating

systems including Linux/UNIX systems, macOS, and Windows [24]

(«Portability» NFREQ 8).

• Python supports modules («Modularise» DECISION 1).

• Python supports objects («Adopt OOP» DECISION 2).

• Knowledge of Python is common in machine learning researchers.

Documentation tools for Python (e.g. Sphinx) are widely used and

actively supported by the community («Ease to Learn» NFREQ 3).

effect

31

There are downsides to using Python. Empirical study showed that Python

is significant slower to C, C++, and Java, though it is also faster to develop

[25]. The ease to develop and use Python programs aligns with EvoKit's

priorities.

5.1.5 Make Hyperparameters States

«Parameters are States» DECISION 5: Assign hyperparameters to an op-

erator as attributes, not when methods of the operator are called. That is,

associate states with its owner, not its user. This is only possible in a design

that uses objects («Adopt OOP» DECISION 2).

This approach localises effects on parameters to just the parent object

(«Effects are Local» DECISION 3). Grouping parameters with most rele-

vant objects also promotes understandability («Ease to Learn» NFREQ

3).

To elaborate, consider an elitist selector 𝑠 with parameter

best_individual. This parameter stores the best individual encountered so

far, so that a duplicate of it is always deposited into the result of selection.

This parameter could be stored in 𝑠 as an attribute (see Algorithm 1), or

it could be managed by the algorithm as a local variable (see Algorithm

2):

elitist selector

32

Algorithm 1: Storing hyperparameter as attribute

𝑠 ∈ 𝑆 ← initialise_selector ()

𝑠.best_individual ∈ ℐ ← old_population.best_individual

new_population ∈ ℐ            ← 𝑠.select(old_population)

Algorithm 2: Storing hyperparameter as local variable

𝑠 ∈ 𝑆 ← initialise_selector()

best_individuall ∈ ℐ ← old_population.best_individual

new_population ∈ ℐ             ← 𝑆.select (old_population, best_individual)

In Algorithm 1, the operator stores its parameters; in Algorithm 2, the

algorithm maintains parameters of all operators.

33

5.1.6 Program to Interface

«Program to Interface» DECISION 6: Design interfaces before implemen-

tation; program against interfaces. Interfaces are part of modules («Mod-

ularise» DECISION 1).

An interface only describes how to use a module [26]. As such, the inter-

face hides all secrets – details that underly the module's behaviour. This

separation of concern allows secrets to change freely, as long as these

changes do not affect how the module can be used («Modifiability»

NFREQ 7) [27].

At the same time, modules that achieve the same purpose in different ways

can share the same interface. This is useful for designing interoperating

operators («Interoperable Operators» FREQ 2).

Because parameters are stored as states («Parameters are States» DECI-

SION 5), methods do not have to accept parameters in arguments. This

allows operators of the same type to share a common set of methods.

5.1.7 Initialise with Constructors

«Initialise with Constructors» DECISION 7: Algorithms and operators re-

ceive parameters in constructors.

At minimum, an evolutionary algorithm must accept operators that dictate

its behaviour and each operator can accept more parameters. This can be

done in two ways: via setters or via constructors.

interface

secret

34

For example, DEAP takes the setter approach. An algorithm in this frame-

work (Example 1) begins with the initialisation of an empty , fol-

lowed by a sequence of calls to . The tutorials instruct

which attributes need to be set1.

1
 http://deap.readthedocs.io/en/master/overview.html

35

Example 1: Workflow of creating an algorithm in DEAP

⋮

⋮

⋮

The constructor approach lists all necessary parameters in constructors. In

pymoo for example (Example 2), the constructor of (representing

algorithm NSGA2) receives parameters such as pop_size, n_offsprings, and

mutation2. Doing so reduces the need to consult the documentation («Ease

to Learn» NFREQ 3).

2
 https://pymoo.org/getting_started/part_2.html

36

Example 2: Workflow of creating an algorithm in pymoo

EvoKit takes a hybrid approach: an object in this framework accepts es-

sential parameters in the constructor and accepts non-essential parameters

via setters. Figure 7 provides a visual illustration.

37

(a) (b) (c)

Figure 7: Passing parameters by (a) setter, (b) constructor, and (c) both.

Also note that in pymoo, parameters such as the mutation rate and number

of offsprings are given to the algorithm itself. EvoKit attaches these pa-

rameters to most relevant operators – mutation rate to variators and num-

ber of offsprings to selectors («Parameters are States» DECISION 5.)

5.1.8 Modify by Extension

«4.1.8 Modify by Extension» DECISION 8: The object-oriented design

(«Adopt OOP» DECISION 2) makes it possible to modify a class by ex-

tension. This pattern is also used in popular frameworks such as PyTorch

and Keras [28] [29].

38

Extending (or deriving) a class changes its implementation («Modifiabil-

ity» NFREQ 7) without changing existing elements of its interface («Pro-

gram to Interface» DECISION 6). For example, all neural networks in

PyTorch extend class and, in doing so, inherit the

method. Consequently, all neural networks can be trained in the same way

by calling this method.

Example 3: Definition of a neural network in PyTorch

5.1.9 Interaction over Documentation

«Interaction over Documentation» DECISION 9: For each major feature,

the framework provides an interactive tutorial.

This requirement is sourced from Keras [30]. The framework should allow

the user to learn from examples. The documentation should act as a

fallback, for advanced users and dealing with situations that are not ex-

plained in examples («Ease to Learn» NFREQ 3).

extension

39

The interactive tutorials are located here.

5.1.10 Complete Documentation

«Complete Documentation» DECISION 10: Every public interface and

every private interface is documented. The documentation describes every

effect, every special behaviour, and every exception that can be raised.

Documentation is vital to using and maintaining code. The documenta-

tion is the final authority on how the code operates, which is vital to both

learning and explaining the framework («Self-Sufficient Instructions»

NFREQ 2, «Transparency» NFREQ 4).

In addition, the documentation captures valuable insights into develop-

ment, which enables maintenance and updating the software for future

needs («Modifiability» NFREQ 7).

The documentation is located here.

documentation

https://yidinglab.github.io/guides/index.html
https://yidinglab.github.io/modules.html

40

5.1.11 Least Astonishment

«Least Astonishment» DECISION 11: Introduce new concepts slowly and

only when necessary. Only use concepts from evolutionary computing or

software engineering.

The Keras API design guidelines mention the need to reduce cognitive load

[31]. In short: the framework should introduce as few new concepts as pos-

sible. When new concepts are introduced, they should be taken from either

the problem domain (evolutionary computing) or the solution domain

(software engineering). Only then can the framework be easily learned and

used («Ease to Learn» NFREQ 3).

5.1.12 One Source of Randomness

«One Source of Randomness» DECISION 12: Use the module as

the sole source of randomness. Having only one source of randomness im-

proves reproducibility («Reproducibility» NFREQ 6).

Custom frameworks can implement their own random seeds, such as

 for PyTorch and for NumPy [32].

the framework instead uses the native method.

Note that a user-defined operator may use its own source of randomness.

For example, a evaluator that runs simulations can source randomness

from an external module. The framework cannot and should not prevent

this.

41

5.2 Module Design

Following «Modularise» DECISION 1, the framework divides into mod-

ules. This section discusses the design of module interfaces and how mod-

ules combine to form a workflow.

5.2.1 Global and Local Strategies

In an evolutionary algorithm, all operators of the same type share the same

responsibility (see Table 3). This feature presents an opportunity to design

one interface for each operator type («Program to Interface» DECISION

6).

The behaviour of an operator is defined on two levels – as a global strategy

and a local strategy. Take three implementations of selectors for example,

where let 𝑛 is the target number of offspring:

 Truncation selection [33, p. 372] (or simply top-𝑛 selection [34, p.

89]) takes 𝑛 highest-fitness individuals from the population.
truncation

selection

42

 Tournament selection [33, p. 368] [34, p. 86] takes the best indi-

vidual from a uniform random subset of the population; repeating 𝑛

times.

 Fitness proportionate selection [34, p. 81] selects an individual

with probability proportional to its fitness; repeating 𝑛 times.

These selectors are defined in the same general format: from a subset of

the population (determined by the global strategy), select a subset (using

the local strategy). Table 5 defines the above selectors in this format:

TABLE 5: OPERATORS, BY GLOBAL AND LOCAL LEVEL STRATEGIES

Selector Global Strategy Local Strategy

Truncation From all Select best 𝑛

Tournament From subset Select best 𝑛

Fitness proportionate From all

Select each with proba-

bility proportional to fit-

ness.

Therefore, EvoKit implements each operator in two parts (Algorithm 3):

the global behaviour and the local behaviour, where the global behaviour

acts a context for the local behaviour. When expending an operator, the

user can choose to override neither, either, or both behaviours.

tournament

selection

fitness

proportionate

selection

43

Algorithm 3: Behaviour of the Selector module

class Selector

function select_from_population (𝑃 ∈ 𝒫)→ 𝒫

𝑃 ∗ ∈ 𝒫 ← initialise_empty_population ()

repeat until is_empty (𝑝) or a termination condition is met

𝑃 ′ ∈ 𝒫 ← global_selection_strategy (𝑃)

𝑃 ′∗ ∈ 𝒫 ← select_from_subset(𝑃 ′)

update 𝑃   ← 𝑃 ∖ 𝑃 ′∗

𝑃 ∗ ← 𝑃 ∗ ∪ 𝑃 ′∗

end repeat

return 𝑃 ∗

end function

function select_from_subset(𝑃 ′ ∈ 𝒫)→ 𝒫

𝑃 ′∗ ∈ 𝒫 ← local_selection_straetgy  (𝑃 ′)

return 𝑃 ′∗

end function

end class

This design has another benefit: to modify an operator by extension, the

user can override just the global or local selection strategy («Modifiability»

NFREQ 7).

44

Variators

The design of variators is similar (Algorithm 4). Here, for each local strat-

egy that receives 𝑛 parents, the default global strategy splits the popula-

tion into 𝑛-tuples then supplies each tuple to the local strategy. The global

strategy then collects the results then returns them.

45

Algorithm 4: Behaviour of the Variator module

class Variator

function initialise (arity ∈ ℤ0+)

 ⋮

function vary_population (𝑃 ∈ 𝒫)→ 𝒫

𝑃 ∗ ∈ 𝒫 ← initialise_empty_population ()

until 𝑝 is exaused

𝑃 ′ ∈ 𝒫 ← next 𝑛 items in 𝒫

𝑃 ∗ ∈ 𝒫 ← 𝑃 ∗ ∪ vary(𝑃 ′)

end until

return 𝑃 ∗

end function

function vary(𝑃 ′ ∈ 𝒫)→ 𝒫

𝑃 ′∗ ∈ 𝒫 ← local_variation_strategy (𝑃 ′)

return 𝑃 ′∗

end function

end class

Evaluators

For evaluators, the default global strategy applies a local strategy to each

item in the population.

46

Algorithm 5: Behaviour of the Evaluator module

class Evaluator

function evaluate_population (𝑃 ∈ 𝒫)→ effect

for each 𝑟 in 𝑃

update 𝑟.fitness: ℝ ← evaluate(𝑟)

end for

end function

function evaluate(𝑟 ∈ ℐ)→ ℝ

return local_evaluation_strategy (r)

end function

end class

5.2.2 Chaining Operators

The evaluator, selector, and variator map from and to just three sets: 𝒫,

𝒫𝐸, and 𝒫𝑈 (see Table 3). The following operators or compositions of op-

erators map from 𝒫 to subsets of 𝒫. They can therefore be chained.

47

TABLE 6: TYPES OF OPERATORS OR COMPOSITIONS OF OPERATORS

Operator or Composition Type

evaluator ∘ selector 𝒫 → 𝒫

variator 𝒫 → 𝒫𝑈 , 𝒫𝑈 ⊂ 𝒫

Consequently, the framework treats an iteration as a composition of two

operations: (a) evaluation followed by selection and (b) variation. This

formulation has two benefits:

Ease to Write Algorithms

Because both operations map from the same set to its subset, one can write

an algorithm by constantly reassigning to the same variable, updating the

population at each step.

48

Algorithm 6: One iteration of a simple evolutionary algorithm

function step(𝑃 ∈ 𝒫, 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆)→ effect

update 𝑃 ∈ 𝒫𝑈 ← 𝑣(𝑃) apply the variator

update 𝑃 ∈ 𝒫𝐸 ← 𝑒(𝐸) apply the evaluator

update 𝑃 ∈ 𝒫𝐸 ← 𝑠(𝑃) apply the selector

end function

Ease to Visualise Algorithms

An algorithm written in this form can be visualised as an acyclic graph,

where nodes are operators and edges represent the passing of individuals

between operators. For example, Figure 8 visualises Algorithm 6 as a se-

quence of assignments to the same variable:

49

Figure 8: Algorithm 6 as a sequence of assignments

This formulation also significantly increases the range of algorithm that

EvoKit can implement. For example, Figure 9 visualises a steady-state al-

gorithm, where each iteration replaces only a subset of the population [35,

p. 510].

50

Figure 9: Visualisation of a steady-state algorithm as an acyclic graph

51

5.3 Modules

The framework implements one module for each component of an evolu-

tionary algorithm, in addition to the algorithm itself. These modules are

abstract base classes that specify the behaviours of concrete modules of

that type.

5.3.1 Individual

«Individual» MODULE 1: Generic base class of all individuals. The indi-

vidual includes the representation, as well as parameters that relate to the

training process (e.g. fitness).

Offspring produced by the variator must be independent from parents, so

that changes made on either the offspring of its parent does not affect the

other. To enable this, Individual must implement a method that creates

an independent copy of itself.

abstract base

class

52

TABLE 7: MEMBERS OF AN INDIVIDUAL

Module Member Type

Individual

genome Depends on the representation

fitness Tuple[float] (Tuple of float)

copy Self (Same class)

5.3.2 Population

«Population» MODULE 2: The population represents a sequence of indi-

viduals.

The population is generic over type parameter D, covariant to Individual.

TABLE 8: MEMBERS OF A POPULATION

Module Type

Population[D] Sequence[D] (Generic sequence)

5.3.3 Variator

«Variator» MODULE 3: This module specifies the common interface of

variators. All variator implementations must use this interface.

The variator is generic over type parameter D, covariant to Individual.

53

TABLE 9: MEMBERS OF A VARIATOR

Module Member Type

Variator[D]
vary self × Population[D] → Population[D]

vary_population self × Population[D] → Population[D]

5.3.4 Evaluator

«Evaluator» MODULE 4: This module specifies the common interface of

evaluators. All evaluator implementations must use this interface.

The evaluator is generic over type parameter D, covariant to Individual.

TABLE 10: MEMBERS OF AN EVALUATOR

Module Member Type

Evalua-

tor[D]

eval self × D → float

eval_population self × D → effect

5.3.5 Selector

«Selector» MODULE 5: This module specifies the common interface of

selectors. All selector implementations must use this interface.

54

Module Member Type

Selector

budget int

select self × Population[D] → Sequence[D]

select_population self × Population[D] → Population[D]

5.3.6 Algorithm

«Algorithm» MODULE 6: This module specifies the common interface of

evolutionary algorithms. All concrete evolutionary algorithms must use

this interface.

Invoking the .step method advances the population by one generation.

Module Member Type

Algorithm step Nothing → effect

5.3.7 Grouping Modules

Machine learning algorithm receives an input, performs some computation,

then emits an output [2, p. 3]. This division of responsibilities leads to a

grouping of modules as shown in Figure 10. These modules satisfy require-

ments «Implement Algorithms» FREQ 1, «Interoperable Operators»

FREQ 2, and «Right Level of Abstraction» NFREQ 1.

55

Figure 10: Division of modules by responsibility

The following modules contain submodules that represent algorithm com-

ponents, from «Individual» MODULE 1 to «Algorithm» MODULE 6.

«Core» MODULE 7: The Core module manages the learning process. Its

submodules are agnostic to the problem: the algorithm and the selector

can be used with any combination of representations, evaluators, and vari-

ators.

«Evolvables» MODULE 8: The Evolvables module includes submodules

that directly interact with the problem, namely: (a) the individual that

captures a solution, (b) the evaluator which captures how well a solution

solves the problem, and (c) the variator which explores the solution space

by deriving new solutions from existing ones.

56

5.3.8 Implementation Modules

The framework ships with two implementations. Each implementation cap-

tures a well-known problem in evolutionary computing and a representa-

tion that has been widely used to solve it.

«BinString» MODULE 9: Capture the OneMax problem and genetic algo-

rithms, using binary string representations.

«GP» MODULE 10: Capture the symbolic repression problem and genetic

programming, using expression tree representations.

5.3.9 Accountant

Because an evolutionary algorithm is iterative, it is trivial to access the

state of a population between iterations. However, what happens during

an iteration is opaque to the user; the framework should provide a way to

visualise this «Visualise Algorithms» FREQ 3.

Because an algorithm is an acyclic graph of operators, there are two places

where useful information can be generated: inside operators and between

operators. Because operators are defined by the user, the framework may

not be able to see into operators. The framework can still report what

happens between operators, however. Figure 11 illustrates this.

57

Figure 11: Opportunity to implement a statistics module

«Accountant» MODULE 11: The solution to this is the observer pattern

[21, pp. 336-351]. As shown in Figure 12, the following exchanges occur

between the Algorithm and Accountant modules:

1. The algorithm registers an accountant.

2. Then, the algorithm subscribes the accountant to itself.

3. When an event fires in the algorithm, the algorithm notifies all at-

tached accountants.

4. When the accountant receives a notification, it collects data from the

associated algorithm.

observer

pattern

58

Figure 12: Information exchanged between Algorithm and Accountant

5.3.10 Visualisers

Some complex representations, such as tree-based genetic programs [36],

are difficult to represent with text. The Visualiser module represents these

individuals as figures («Visualise Individuals» FREQ 4). Its submodules

correspond to representations.

«Visualisers» MODULE 12: Visualiser for complex representations.

«GP-Visualiser» MODULE 13, submodule of «Visualisers» MODULE 12:

Visualiser for tree-based genetic programs.

5.4 The Workflow: Bring Everything Together

The module SimpleLinearAlgorithm extends Algorithm. SimpleLinearAl-

gorithm describes a simple three-step algorithm of variation-selection-eval-

uation., as shown in Figure 13.

59

Figure 13: A simple linear algorithm

With the algorithm defined, the user can define custom operators. Each

custom operator should extend the corresponding base class (Evaluator,

Selector, and Variator). Figure 14 illustrates these operators and their in-

heritance relations.

60

Figure 14: Initialising an algorithm with components

While all of that seems intimidating, it can be done in just 5 lines: 1 line

to define the algorithm, 1 line to initialise the population, and 3 lines to

initialise operators. Example 4 shows an example of this.

Example 4: Invoking an evolutionary algorithm in 5 lines

61

6 Examples

This section demonstrates the application of the framework to solve two

problems: OneMax and Symbolic Regression.

6.1 OneMax

This section demonstrates the application of genetic programming to solve

a symbolic regression problem. The algorithm listed in this section uses

the following components:

62

TABLE 11: CHOICES FOR EACH COMPONENT TYPE FOR ONEMAX

Type Choice Definition

Algorithm Minimal Figure 2

Representation Binary string
6.1.1 Components

Evaluator OneMax

Variator Bit Mutation 6.1.1 Components

Selector (𝜇 + 𝜆) 6.1.1 Components

6.1.1 Components

The "hello world" of evolutionary algorithms, the OneMax problem was

first proposed for study with genetic algorithms [37].

Representation and Evaluator

The OneMax problem uses fixed-length binary string representations. It

seeks to evolve a string whose bits sum to the largest possible number.

Representation Fixed-length binary string e.g. [1,1,0,1]

Evaluator Sum digits e.g. return 3 for [1,1,0,1

OneMax

63

Variator

Many variators have been defined for this representation. This example

uses the bitwise mutation operator [2, p. 52]. For each bit in the rep-

resentation, this operator flips that bit with probability 𝑝 ∈ [0…1] ⊆ ℝ.

Variator For each bit in the parent, flip it with probability 𝑝.

Selector

This example uses (𝜇 + 𝜆) selection, where 𝜇 parents produce 𝜆 off-

spring. Then, parents and offspring form a pool of size (𝜇 + 𝜆), from which

𝜇 individuals with highest fitness are selected [2, p. 89].

(𝜇 + 𝜆)

Selector

Truncation selector, select 𝜆 highest-fitness individu-

als from a combined pool of parents and offspring.

Example for One Iteration

This example uses 3 parents. Since the binary mutation operator produces

one offspring for each parent, the number of offspring is also 3. The selector

selects 3 individuals from these 6 (3 + 3) individuals. Each individual has

two memberss: the genome (the binary string representation) and its fit-

ness.

bitwise

mutation

operator

(𝜇 + 𝜆)

selection

64

TABLE 12: INDIVIDUALS IN THE EXAMPLE ALGORITHM

Members

fitness

𝑝1 [1,0,0,0,1] sum(1,0,0,0,1) = 2

𝑝2 [0,1,1,1,0] sum(0,1,1,1,0) = 3

𝑝3 [0,1,0,1,0] sum(0,1,0,1,0) = 2

Offspring Generation

The variator applies to each of 𝑝1, 𝑝2, 𝑝3. For each digit in each 𝑝𝑖, the

variator independently decides whether to flip that digit, with probability

𝑝 to flip.

Suppose that the decisions are [𝑦, 𝑦, 𝑛, 𝑛, 𝑦], [𝑛, 𝑛, 𝑦, 𝑛, 𝑦], and [𝑛, 𝑦, 𝑦, 𝑦, 𝑦]

for 𝑝1, 𝑝2, 𝑝3 respectively. XORing a decision to the bit string applies that

decision.

𝑝1 = [1,0,0,0,1]

𝑝2 = [0,1,1,1,0]

𝑝3 = [0,1,0,1,0]

───𝑋𝑂𝑅

───𝑋𝑂𝑅

───𝑋𝑂𝑅

[1,1,0,0,1]

[0,0,1,0,1]

[0,1,1,1,1]

⏞
decisions as masks

→
→
→

[0,1,0,0,0] = 𝑝1
′

[0,1,0,1,1] = 𝑝2
′

[0,0,1,0,1] = 𝑝3
′

Selection

Together, parents and their offspring form a pool of size 6.

65

TABLE 13: INDIVIDUALS IN THE EXAMPLE ALGORITHM, POST VARIATION

Members

Fitness

𝑝1 [1,0,0,0,1] sum(1,0,0,0,1) = 2

𝑝2 [0,1,1,1,0] sum(0,1,1,1,0) = 3

𝑝3 [0,1,0,1,0] sum(0,1,0,1,0) = 2

𝑝1
′ [0,1,0,0,0] sum(0,1,0,0,0) = 1

𝑝2
′ [0,1,0,1,1] sum(0,1,0,1,1) = 3

𝑝3
′ [0,0,1,0,1] sum(0,0,1,0,1) = 2

From there, the selector takes 3 individuals with highest fitness. That is:

𝑝2 with fitness 3, 𝑝2
′ with fitness 3, and 𝑝3

′ with fitness 2. Because 𝑝1, 𝑝3, 𝑝3
′

share the same fitness of 2, 𝑝3
′ is selected uniformly to break the tie.

6.1.2 Analysis

The training curve (Figure 15) is generally smooth. Convergence occurs at

step 40. The fitness improvement rate begins quickly, then plateaus close

to convergence.

66

Figure 15: Training curve of the custom algorithm

6.2 Symbolic Regression

This section demonstrates the application of genetic programming to solve

symbolic regression. The algorithm listed in this section uses the following

components:

67

TABLE 14: HYPERPARAMETERS FOR SYMBOLIC REGRESSION

Type Choice Definition

Algorithm Minimal Figure 2

Representation Expression tree

6.2.2 Symbolic Regression
Evaluator

Symbolic

regression

Variator Subtree crossover 6.2.1 Generic Programming

Selector (𝜇 + 𝜆) 6.1.1 Components

6.2.1 Generic Programming

Generic programming by Koza [36] uses representations that are them-

selves functions. Each representation (a expression tree, or genetic pro-

gram) is a syntax tree where intermediate nodes are functions and termi-

nal nodes are either nullary functions, constants, or variables.

As an example, the genetic program shown in Figure 16 is functionally

identical to pow(add(1, 𝑥1) , 𝑥2), or (1 + 𝑥1)
𝑥2 .

generic

programming

expression tree

68

Figure 16: Visualisation of a simple genetic program

Initialisation

The initialisation of genetic trees uses several parameters. First, the func-

tion set and the terminal set decide values that could form nodes of the

constructed program [2, p. 75]:

function set

terminal set

69

TABLE 15: A PRIMITIVE SET, SORTED BY ARITY

Set Arity Items Definition

Terminal 0 2, 1, 0.5 Real numbers

Function

1
sin The sine function

cos The cosine function

2

add add(𝑥1, 𝑥2) ≔ 𝑥1 + 𝑥2

sub sub(𝑥1, 𝑥2) ≔ 𝑥1 − 𝑥2

mul mul(𝑥1, 𝑥2) ≔ 𝑥1 ⋅ 𝑥2

div div(𝑥1, 𝑥2) = 𝑥1/𝑥2 if 𝑥2 ≠ 0, else 0

The construction of genetic tree induces a bias to the initial condition.

This example uses a modified ramped half-and-half method [2, p. 105]. The

process begins with a random root node, then recursively populates chil-

dren of the node. Each random node contains a uniformly selected primi-

tive of any arity, except that after a certain budget or depth is reached,

only unary primitives (terminals) can be selected. Algorithm 7 describes

the algorithm in more detail.

70

Algorithm 7: Initialisation of a random genetic tree

71

initialise global node_budget: int

initialise global MAX_DEPTH : int

new_tree : Tree ← make_random_tree(0)

function make_random_tree(current_depth: int) → Tree

new_primitive: Primitive ← pool_primitive(current_depth)

new_node: Node ← create_node_from(new_primitive)

repat for arity (new_primitive) times

new_node.add_child (make_random_tree(current_depth+1))

end repeat

return new_node

end function

function pool_primitive(current_depth: int) → Primitive, effect

new_primitive: Node

acess global node_budget

acess global MAX_DEPTH

if node_budget < 1 or current𝑠_depth < MAX_DEPTH then

new_primitive ← uniformly selected unary primitive

else

update node_budget ← node_budget − 1

new_primitive ← uniformly selected primitive

end if

return new_primitive

72

end function

Variator

This example uses the subtree crossover operator. For each pair of

parents (𝑝1, 𝑝2), this operator performs the following actions:

1. Uniformly, select intermediate nodes 𝑛1 ∈ 𝑝1 and 𝑛2 ∈ 𝑝2

2. Uniformly, select arbitrary child 𝑛1𝑐 of 𝑝1 and arbitrary child 𝑛2𝑐 of

𝑝2

3. Exchange 𝑛1𝑐 and 𝑛2𝑐.

Figure 17 shows an example of this:

subtree

crossover

operator

73

(a) (b)

(c)

Figure 17: Steps of a crossover operation: (a) select internal nodes, (b)

select children of internal nodes, (c) result of crossover.

6.2.2 Symbolic Regression

74

The symbolic regression problem seeks to find a function that agrees

most with a training set, or the underlying function that generated the

training set [36].

Evaluator

Given a training set of points 𝑆 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 and a hypothetical generator

𝑓∗ where 𝑦𝑖 = 𝑓
∗(𝑥𝑖), the fitness of genetic program is the difference in its

output from that of 𝑓∗:

𝜑(𝑔 ∣ {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛) = ∑ abs(𝑦𝑖 − 𝑔(𝑥𝑖))

𝑖=1,…,𝑛

In this example, the set 𝑆 is generated with 𝑓𝑢 = sin(𝑥) + 2 cos(𝑥) over

{−20,−19.75,−19.5,… ,19.5, 19.75}, or {(1 − 81)/4}𝑖=1
101.

As an example of how the evaluator works, let 𝑔′ be a representation of

sin(𝑥) + cos(𝑥). The fitness of 𝑔′, given evaluator 𝜑, is

∑abs[(sin(𝑥𝑖) + cos(𝑥𝑖)) − (sin(𝑥𝑖) + 2 cos(𝑥𝑖))]
161

𝑖=1

, 𝑥𝑖 = (𝑖 − 81)/4.

6.2.3 Analysis

Figure 18 shows the training curve. Convergence occurs at generation 15.

symbolic

regression

75

Figure 18: Training curve of the symbolic regression algorithm

Figure 19 plots highest-fitness individuals for each generation. Through

generations, these individuals become better approximates of the test set,

until convergence occurs.

76

Figure 19: Best individuals over generations

Figure 20 shows the best evolved individual s(sin(𝑥) + cos(𝑥) ∗ 1) + cos(𝑥)

which, after some simplification, becomes sin(𝑥) + 2 cos(𝑥).

77

Figure 20: Best evolved tree

Note the occurrence of an identity function ∗ 1. This is an instance of ge-

netic programming – while the crossover operator does not seek to remove

nodes, the algorithm is able to evolve extra nodes into identities, so that

it can emulate a simple function with a representation that has more nodes.

78

7 Related Work

EC-KiTy is a well-engineered object-oriented evolutionary computing

framework. Both EC-KiTy and EvoKit are object-oriented frameworks

that explicitly evoke software engineering principles. I chose the name

EvoKit in homage to EC-KiTy.

PyTorch is a state-of-the-art deep learning framework. EvoKit references

PyTorch for its user-friendly design and usability features.

Keras is a high-level neural network API with a rich design guideline [31].

Its developers have written extensively about its design in blogs [30]. Sev-

eral designs of EvoKit reference Keras.

Pymoo and DEAP are state-of-the-art evolutionary computing frame-

works. They first inspired the development of EvoKit.

79

8 Future Work

During development, several compromises were made due to time con-

straint. Given time, the framework

More algorithms: The framework has only been used to implement ge-

netic algorithms and genetic programming. It could implement other par-

adigms such as evolutionary programming, evolutionary strategies, multi-

objective evolution, and more.

Parallel computing: Parallelism significantly speeds up evolutionary al-

gorithms [38] [39]. Many frameworks [40] [41] [42] [43] implement parallel

computing and even GPU computing. EvoKit must do the same.

Linear Genetic Programming: Many recent advancements [44] [45]

in evolutionary computing are due to linear genetic programming, an al-

ternative to tree-based genetic programs [46, p. 6]. This framework

should implement linear genetic programming in the future.

80

9 Acknowledgements

To my supervisor Dr. Stephen Kelly for his unwavering support. Develop-

ment of EvoKit began as part of an assignment in his class. His continued

support has been vital in every stage of this project.

To Dr. Spencer Smith, who allowed me to bring this project into his class.

His lessons on software engineering were instructed EvoKit's development

from beginning to end.

Sections of this report are developed from a template by Smith and Lai

[19].

81

10 Appendices

Appendix 1: Evolutionary Algorithms Implemented

Algorithm Problem Reference

Genetic Algorithm OneMax [47]

Genetic Programming Symbolic Regression [36]

Index

(μ + λ) selection, 61

abstract base class, 49

abstraction, 21

bitwise mutation operator, 61

documentation, 37

effect, 28

elitist selector, 29

evaluated induvial, 16

evaluator, 13

evolutionary algorithms, 13

evolutionary computing, 12

expression tree, 65

extension, 36

fitness, 13

fitness proportionate selection, 40

function set, 66

functional requirement, 20

generic programming, 65

individual, 13

interface, 31

member, 27

module, 26

non-functional requirement, 21

objects, 27

observer pattern, 55

offspring evaluator, 17

OneMax, 60

operator, 14

parent evaluator, 17

parent variator, 17

population, 13

primary goal, 19

problem model, 12

requirement, 19

search and optimisation, 14

secret, 31

82

selector, 13

subgoal, 19

subtree crossover operator, 70

survivor selector, 17

symbolic regression, 72

terminal set, 66

tournament selection, 40

traceability diagram, 23

truncation selection, 39

variator, 13

10.1 List of Tables

Table 1: Notations of collections ... 16

Table 2: Notations of operators .. 17

Table 3: Operators, by global and local level strategies 40

Table 4: Types of operators or compositions of operators 45

Table 5: Members of an individual ... 50

Table 6: Members of a population .. 50

Table 7: Members of a variator ... 51

Table 8: Members of an evaluator ... 51

Table 9: Choices for each component type for OneMax 60

Table 10: Individuals in the example algorithm 62

Table 11: Individuals in the example algorithm, post variation 63

83

Table 12: Hyperparameters for symbolic regression 65

Table 13: A primitive set, sorted by arity ... 67

Table 14: Mathematical notations.. 9

Table 15: Algorithm notations .. 10

10.2 List of Figures

Figure 1: Steps of an evolutionary algorithm .. 14

Figure 2: A minimal evolutionary algorithm ... 15

Figure 3: Structure a typical evolutionary algorithm 18

Figure 4: Relation between goals, requirements, and design decisions 20

Figure 5: Traceability diagram: goals to requirements to design decisions

 ... 24

Figure 6: Traceability diagrams: goals to requirements to modules 25

Figure 7: Passing parameters by (a) setter, (b) constructor, and (c) both.

 ... 35

Figure 8: Algorithm 6 as a sequence of assignments 47

Figure 9: Visualisation of a steady-state algorithm as an acyclic graph .. 48

Figure 10: Division of modules by responsibility 53

84

Figure 11: Opportunity to implement a statistics module 55

Figure 12: Information exchanged between Algorithm and Accountant .. 56

Figure 13: A simple linear algorithm .. 57

Figure 14: Initialising an algorithm with components 58

Figure 15: Visualisation of a simple genetic program 66

Figure 16: Steps of a crossover operation: (a) select internal nodes, (b)

select children of internal nodes, (c) result of crossover. 71

Figure 17: Training curve of the symbolic regression algorithm 73

Figure 18: Best individuals over generations ... 74

Figure 19: Best evolved tree.. 75

10.3 List of Algorithms

Algorithm 1: Storing hyperparameter as attribute 30

Algorithm 2: Storing hyperparameter as local variable 30

Algorithm 3: Behaviour of the Selector module 41

Algorithm 4: Behaviour of the Variator module 43

Algorithm 5: Behaviour of the Evaluator module 44

85

Algorithm 6: One iteration of a simple evolutionary algorithm 46

10.4 List of Functional Requirements

«Implement Algorithms» FREQ 1 ← (GOAL 1): The framework must be

able to implement all evolutionary algorithms in Appendix 1. 20

«Interoperable Operators» FREQ 2 ← (GOAL 2): Ensure that operators

of the same type should share one common behaviour so that they can be

used interchangeably. .. 20

«Visualise Algorithms» FREQ 3 ← (GOAL 3): Provide a way to visualise

the learning process. ... 20

«Visualise Individuals» FREQ 4 ← (GOAL 3): Provide a way to visualise

individuals. ... 21

10.5 List of Nonfunctional Requirements

«Right Level of Abstraction» NFREQ 1: A powerful tool against

complexity, abstraction separates the important from the inconsequential

[13]. The framework abstracts away common and repetitive tasks, so that

its user can focus on developing novel algorithms. 21

«Self-Sufficient Instructions» NFREQ 2: The framework sufficiently and

completely describes how it should be used. That is, a user can use all

features of the software without consulting an external source. 21

86

«Easy to Learn» NFREQ 3: Without prior experience, a user can quickly

learn to use most features of the framework. .. 21

«Transparency» NFREQ 4: The framework makes its inner workings

visible to the user. .. 22

«Independence» NFREQ 5: The framework does not use any external mod-

ule except for ones in Appendix 2. Because external modules are

maintained with the framework, they can have unexpected behaviours as

either errors or undocumented features; the framework should avoid using

external modules for this reason. .. 22

«Reproducibility» NFREQ 6: All sources of randomness can be controlled.

When randomness is controlled, the same sequence of actions always lead

to the same output. .. 22

«Modifiability» NFREQ 7: Users and maintainers of the framework can

modify it to account for new requirements, in particular to add new

capabilities. ... 23

«Portability» NFREQ 8: The framework operates normally in many

different operating environments. This requirement is complementary to

«Independence» NFREQ 5, which implies portability with respect to

different software environments. ... 23

87

10.6 List of Design Decisions

«Modularise» DECISION 1: Modularisation decomposes the software into

disjoint modules. Each module is responsible for a unique set of tasks. A

module can use other modules. ... 26

«Use Objects» DECISION 2: The nature of evolutionary algorithms lends

to them being implemented as objects: ... 27

«Effects are Local» DECISION 3: Unbound functions do not produce side

effects; methods only affect states of the owner object or its arguments;

the documentation explicitly mentions all effects. 27

«Use Python» DECISION 4: Python is a popular programming language

in the machine learning research community. This software is coded in

Python for the following benefits: ... 28

«Parameters are States» DECISION 5: Assign hyperparameters to an

operator as attributes, not when methods of the operator are called. That

is, associate states with its owner, not its user. This is only possible in a

design that uses objects («Use Objects» DECISION 2). 29

«Program to Interface» DECISION 6: Design interfaces before

implementation; program against interfaces. Interfaces come with modules

(«Modularise» DECISION 1). .. 31

«Initialise with Constructors» DECISION 7: Algorithms and operators

receive parameters in constructors. ... 31

88

«4.1.8 Modify by Extension» DECISION 8: The object-oriented design

(«Use Objects» DECISION 2) makes it possible to modify a class by

extension. This pattern is also used in popular frameworks such as PyTorch

and Keras [22] [25]. ... 35

«Interaction over Documentation» DECISION 9: For each major feature,

the framework provides an interactive tutorial. 36

«Complete Documentation» DECISION 10: Every interface, public or

private, is documented. The documentation describes every effect, every

special behaviour, and every exception that can be raised. 37

«Least Astonishment» DECISION 11: Introduce new concepts slowly and

only when necessary. Only introduce concepts from evolutionary

computing or software engineering. ... 38

«One Source of Randomness» DECISION 12: Use the module as

the sole source of randomness. .. 38

10.7 List of Modules

«Individual» MODULE 1: Generic base class of all individuals. The

individual includes the representation, as well as parameters that relate to

the training process (e.g. fitness). ... 49

«Population» MODULE 2: The population represents a sequence of

individuals. ... 50

89

«Variator» MODULE 3: This module specifies the common interface of

variators. All variator implementations must use this interface. 50

«Evaluator» MODULE 4: This module specifies the common interface of

evaluators. All evaluator implementations must use this interface. 51

«Selector» MODULE 5: This module specifies the common interface of

selectors. All selector implementations must use this interface. 51

«Algorithm» MODULE 6: This module specifies the common interface of

evolutionary algorithms. All concrete evolutionary algorithms must use

this interface. .. 52

«Core» MODULE 7: The Core module manages the learning process. Its

submodules are agnostic to the problem: the algorithm and the selector

can be used with any combination of representations, evaluators, and

variators.. 53

«Evolvables» MODULE 8: The Evolvables module includes submodules

that directly interact with the problem, namely: (a) the individual that

captures a solution, (b) the evaluator which captures how well a solution

solves the problem, and (c) the variator which explores the solution space

by deriving new solutions from existing ones. ... 53

«BinString» MODULE 9: Capture the OneMax problem and genetic

algorithms, using binary string representations. 54

«GP» MODULE 10: Capture the symbolic repression problem and genetic

programming, using expression tree representations. 54

90

«Accountant» MODULE 11: The solution to this is the observer pattern

[17, pp. 336-351]. The operation of the module is as follows: 55

«Visualisers» MODULE 12: Visualiser for complex representations. 56

«GP-Visualiser» MODULE 13, submodule of «Visualisers» MODULE 12:

Visualiser for tree-based genetic programs. ... 56

91

11 References

[1] W. Banzhaf, P. Machado and M. Zhang, Handbook, 1.1

Introduction ed., Singapore: Springer Nature, 2024, pp. 4, 5.

[2] A. Eiben and J. Smith, Introduction To Evolutionary Computing,

vol. 45, Springer, 2015.

[3] S. Dower, “Disambiguating evolutionary algorithms: composition

and communication with ESDL.,” 2012.

[4] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau and

C. Gagné, “DEAP: Evolutionary Algorithms Made Easy,” Journal of

Machine Learning Research, vol. 13 , pp. 2171--2175, 7 2012.

[5] B. J. and D. K., “pymoo: Multi-Objective Optimization in Python,”

IEEE Access, vol. 8, pp. 89497-89509, 2020.

[6] M. Sipper, T. Halperin, I. Tzruia and A. Elyasaf, “EC-KitY:

Evolutionary computation tool kit in {Python} with seamless

machine learning integration,” SoftwareX, vol. 22, p. 101381, 2023.

92

[7] M. Sipper, R. S. Olson and J. H. Moore, “Evolutionary

computation: the next major transition of artificial intelligence?,”

BioData Mining, vol. 10, no. 1, p. 26, 29 July 2017.

[8] J. D. Lohn, G. S. Hornby and D. S. Linden, “An Evolved Antenna

for Deployment on Nasa’s Space Technology 5 Mission,” in Genetic

Programming Theory and Practice II, U. O'Reilly, T. Yu, R. Riolo

and B. Worzel, Eds., Boston, Springer, Boston, MA, 2005.

[9] E. Galvan and P. Mooney, “Neuroevolution in Deep Neural

Networks: Current Trends and Future Challenges,” IEEE

Transactions on Artificial Intelligence, vol. 2, no. 6, pp. 476-493,

December 2021.

[10] E. Real, C. Liang, D. R. So and Q. V. Le, “AutoML-Zero: Evolving

Machine Learning Algorithms From Scratch,” 2020. [Online].

Available: https://arxiv.org/abs/2003.03384. [Accessed 9 July 2024].

[11] W. Tenachi, R. Ibata and F. I. Diakogiannis, “Deep symbolic

regression for physics guided by units constraints: toward the

automated discovery of physical laws,” The Astrophysical Journal,

vol. 959, no. 2, p. 99, December 2023.

93

[12] Genetic And Evolutionary Computation, “Human-Competitive

Awards 2004 – Present,” Genetic And Evolutionary Computation,

[Online]. Available: https://www.human-competitive.org/. [Accessed

9 7 2024].

[13] J. R. Koza, “Human-competitive results produced by genetic

programming,” Genetic Programming and Evolvable Machines, vol.

11, no. 3, pp. 251-284, 1 9 2010.

[14] T. Z. Caitlin Sadowski, Ed., “Removing Software Development

Waste to Improve Productivity,” in Rethinking Productivity in

Software Engineering, 1st ed., Apress Berkeley, CA, 2019, pp. 221-

240.

[15] K. M. Adams, Introduction to Non-functional Requirements, 1 ed.,

Springer Cham, 2015, pp. 45-71.

[16] C. Ghezzi, M. Jazayeri and D. Mandrioli, Fundamentals of software

engineering, 2 ed., Prentice-Hall, Inc., 1991.

[17] L. Abraham, T. Lestang, D. Wilby, F. Anderson and S. Lo, “Aim

for understandability if you want to write good research software,”

Software Sustainability Institute, 4 July 2022. [Online]. Available:

94

www.software.ac.uk/blog/aim-understandability-if-you-want-write-

good-research-software. [Accessed 1 July 2024].

[18] S. Smith, M. Srinivasan and S. Shankar, “Debunking the myth that

upfront requirements are infeasible for scientific computing

software,” in Proceedings of the 14th International Workshop on

Software Engineering for Science, Montreal, Quebec, Canada, 2019.

[19] W. S. Smith and L. Lai, “A new requirements template for scientific

computing,” Proceedings of the First International Workshop on

Situational Requirements Engineering Processes–Methods,

Techniques and Tools to Support Situation-Specific Requirements

Engineering Processes, SREP, vol. 5, no. 107-121, pp. 107-121,

2005.

[20] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems

into Modules,” Comm. ACM, pp. 1053-1058, 11 1972.

[21] A. Shvets, Dive into Design Patterns,, 2019.

[22] M. R.-M. Kelly Rivers, “Functions,” [Online]. Available:

https://www.cs.cmu.edu/~15110-s20/slides/week2-2-functions.pdf.

[Accessed 7 July 2024].

95

[23] “MicroPython,” [Online]. Available:

github.com/micropython/micropython. [Accessed 2024].

[24] “Download the latest version of Python,” [Online]. Available:

www.python.org/downloads/.

[25] L. Prechelt, “An empirical comparison of C, C++, Java, Perl,

Python, Rexx, and Tcl for a search/string-processing program.,”

2000.

[26] D. L. Parnas and P. Clements, “A Rational Design Process: How

and Why to Fake it,” IEEE Transactions on Software Engineering,

vol. 12, pp. 251-257, 2 1986.

[27] D. L. Parnas, P. Clement and D. M. Weiss, “The modular structure

of complex systems,” International Conference on Software

Engineering, pp. 408-419, 1984.

[28] PyTorch, “Build the Neural Network,” PyTorch, 2024. [Online].

Available:

pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html.

[Accessed 01 July 2024].

96

[29] D. Poulopoulos, “3 Keras Design Patterns Every ML Engineer

Should Know,” Mmedium, 9 7 2021. [Online]. Available:

https://towardsdatascience.com/3-keras-design-patterns-every-ml-

engineer-should-know-cae87618c7e3. [Accessed 10 7 2024].

[30] H. Jin, “Design an Easy-to-Use Deep Learning Framework,”

Medium, 10 April 2024. [Online]. Available:

https://towardsdatascience.com/design-an-easy-to-use-deep-

learning-framework-52d7c37e415f. [Accessed 3 7 2024].

[31] F. Chollet, “Keras API design guidelines,” 30 5 2020. [Online].

Available: https://github.com/keras-

team/governance/blob/24401c1addf521e522fd363f6eb40e7c4c4881d5

/keras_api_design_guidelines.md. [Accessed 4 7 2024].

[32] PyTorch, “Reproducibility,” [Online]. Available:

https://pytorch.org/docs/stable/notes/randomness.html. [Accessed

15 8 2024].

[33] T. Blickle and L. Thiele, “A Comparison of Selection Schemes Used

in Evolutionary Algorithms,” Evolutionary Computation, vol. 4, no.

4, pp. 361-394, 1996.

97

[34] P. J. B. Hancock, “An Empirical Comparison of Selection Methods

in Evolutionary Algorithms,” in Evolutionary Computing, AISB

Workshop, 1994.

[35] A. Agapie and A. H. Wright, “Theoretical Analysis of Steady State

Genetic Algorithms,” Applications of Mathematics, vol. 59, no. 5,

pp. 509-525, 10 2014.

[36] J. R. Koza, “Genetic programming as a means for programming

computers by natural selection,” Statistics and Computing, vol. 4,

no. 2, pp. 379-423, 1 6 1994.

[37] L. J. E. J. David Schaffer, “On Crossover as an Evolutionarily

Viable Strategy,” Proceedings of the Fourth International Conference

on Genetic Algorithms, pp. 61-68, 1991.

[38] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,” [Online].

Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi

=a13fcba4fab4713d5acb2d970eddc6b148d2596d. [Accessed 8 8 2024].

[39] J. G. Falcón-Cardona, R. H. Gómez, C. A. C. Coello and M. G. C.

Tapia, “Survey, Parallel Multi-Objective Evolutionary Algorithms: A

98

Comprehensive,” Swarm and Evolutionary Computation, vol. 67,

2021.

[40] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau and

C. Gagné, “Using Multiple Processors,” 24 Jul 2023. [Online].

Available:

https://deap.readthedocs.io/en/master/tutorials/basic/part4.html.

[Accessed 14 8 2024].

[41] J. Blank, “Parallelization,” 2020. [Online]. Available:

https://pymoo.org/problems/parallelization.html. [Accessed 14 8

2024].

[42] Scikit-learn Developers, “Parallelism, resource management, and

configuration,” [Online]. Available: https://scikit-

learn.org/stable/computing/parallelism.html. [Accessed 14 8 2024].

[43] S. Kim and J. Kang, “Optional: Data Parallelism,” [Online].

Available:

https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial

.html. [Accessed 14 8 2024].

99

[44] E. Real, C. Liang, D. R. So and Q. V. Le, “AutoML-Zero: evolving

machine learning algorithms from scratch,” in Proceedings of the

37th International Conference on Machine Learning, 2020.

[45] S. Kelly, D. S. Park, X. Song, M. McIntire, P. Nashikkar, R. Guha,

W. Banzhaf, K. Deb, V. N. Boddeti, J. Tan and E. Real,

“Discovering Adaptable Symbolic Algorithms from Scratch,” in 2023

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Detroit, USA, 2033.

[46] M. F. Brameier and W. Banzhaf, Linear Genetic Programming, 1

ed., Springer Publishing Company, Incorporated, 2010.

[47] B. Doerr, C. Gießen, C. Witt and J. Yang, “The (1+λ) Evolutionary

Algorithm with Self-Adjusting Mutation Rate,” Proceedings of the

Genetic and Evolutionary Computation Conference, vol. 81, pp.

1351-1358, 1 July 2017.

